Gynomonoecy

Last updated

Gynomonoecy is defined as the presence of both female and hermaphrodite flowers on the same individual of a plant species. [1] It is prevalent in Asteraceae but is poorly understood. [2]

Contents

It is a monomorphic sexual system comparable with monoecy, andromonoecy and trimonoecy. [3]

Occurrence

This sexual system occurs in about 2.8% of flowering plants. [4] It is present in 3% of Silene species [5] and 23 families of flowering plants, but is most common in the daisy family, Asteraceae. [6] Of the approximately 23000 species in the Asteraceae [7] :480 about 200 are gynomonoecious. [8]

Evolution

Gynomonoecy may be an intermediate evolutionary state between monoecy and hermaphroditism. [9] It is also postulated to be the ancestor to trimonoecy. [3]

Gynomonecy evolved once in Hawaiian Tetramolopium . [10]

In families like Compositae or Chenopodiaceae, gynomonoecy is considered leading path to monoecy from hermaphroditism and vice versa. [11]

Related Research Articles

<span class="mw-page-title-main">Sex</span> Trait that determines an individuals sexually reproductive function

Sex is the trait that determines whether a sexually reproducing organism produces male or female gametes. A male organism produces small mobile gametes, while a female organism produces larger, non-mobile gametes. An organism that produces both types of gamete is called a hermaphrodite. During sexual reproduction, a male and a female gamete fuse to form a zygote, which develops into an offspring that inherits traits from each parent.

<i>Silene</i> Genus of flowering plants

Silene is a genus of flowering plants in the family Caryophyllaceae. Containing nearly 900 species, it is the largest genus in the family. Common names include campion and catchfly. Many Silene species are widely distributed, particularly in the northern hemisphere.

Dioecy is a characteristic of certain species that have distinct unisexual individuals, each producing either male or female gametes, either directly or indirectly. Dioecious reproduction is biparental reproduction. Dioecy has costs, since only the female part of the population directly produces offspring. It is one method for excluding self-fertilization and promoting allogamy (outcrossing), and thus tends to reduce the expression of recessive deleterious mutations present in a population. Plants have several other methods of preventing self-fertilization including, for example, dichogamy, herkogamy, and self-incompatibility.

<span class="mw-page-title-main">Sequential hermaphroditism</span> Sex change as part of the normal life cycle of a species

Sequential hermaphroditism is one of the two types of hermaphroditism, the other type being simultaneous hermaphroditism. It occurs when the organism's sex changes at some point in its life. In particular, a sequential hermaphrodite produces eggs and sperm at different stages in life. Sequential hermaphroditism occurs in many fish, gastropods, and plants. Species that can undergo these changes do so as a normal event within their reproductive cycle, usually cued by either social structure or the achievement of a certain age or size. In some species of fish, sequential hermaphroditism is much more common than simultaneous hermaphroditism.

<span class="mw-page-title-main">Ovary (botany)</span> Flowering plant reproductive part

In the flowering plants, an ovary is a part of the female reproductive organ of the flower or gynoecium. Specifically, it is the part of the pistil which holds the ovule(s) and is located above or below or at the point of connection with the base of the petals and sepals. The pistil may be made up of one carpel or of several fused carpels, and therefore the ovary can contain part of one carpel or parts of several fused carpels. Above the ovary is the style and the stigma, which is where the pollen lands and germinates to grow down through the style to the ovary, and, for each individual pollen grain, to fertilize one individual ovule. Some wind pollinated flowers have much reduced and modified ovaries.

Androdioecy is a reproductive system characterized by the coexistence of males and hermaphrodites. Androdioecy is rare in comparison with the other major reproductive systems: dioecy, gynodioecy and hermaphroditism. In animals, androdioecy has been considered a stepping stone in the transition from dioecy to hermaphroditism, and vice versa.

<span class="mw-page-title-main">Hermaphrodite</span> Sexually reproducing organism that produces both male and female gametes

A hermaphrodite is a sexually reproducing organism that produces both male and female gametes. Animal species in which individuals are of different sexes, either male or female but not both, are gonochoric, which is the opposite of hermaphroditic.

<span class="mw-page-title-main">Gynodioecy</span> Coexistence of female and hermaphrodite within a population

Gynodioecy is a rare breeding system that is found in certain flowering plant species in which female and hermaphroditic plants coexist within a population. Gynodioecy is the evolutionary intermediate between hermaphroditism and dioecy.

Sex determination in <i>Silene</i> Sex determination in the flower genus Silene

Silene is a flowering plant genus that has evolved a dioecious reproductive system. This is made possible through heteromorphic sex chromosomes expressed as XY. Silene recently evolved sex chromosomes 5-10 million years ago and are widely used by geneticists and biologists to study the mechanisms of sex determination since they are one of only 39 species across 14 families of angiosperm that possess sex-determining genes. Silene are studied because of their ability to produce offspring with a plethora of reproductive systems. The common inference drawn from such studies is that the sex of the offspring is determined by the Y chromosome.

<i>Erophaca</i> Genus of legumes

Erophaca is a monotypic genus of the tribe Galegeae. Its only species, Erophaca baetica, is a perennial plant distributed in disjunct populations in the Mediterranean Region.

<span class="mw-page-title-main">Pollinator-mediated selection</span> Process in which pollenators effects a plants evolution

Pollinator-mediated selection is an evolutionary process occurring in flowering plants, in which the foraging behavior of pollinators differentially selects for certain floral traits. Flowering plant are a diverse group of plants that produce seeds. Their seeds differ from those of gymnosperms in that they are enclosed within a fruit. These plants display a wide range of diversity when it comes to the phenotypic characteristics of their flowers, which attracts a variety of pollinators that participate in biotic interactions with the plant. Since many plants rely on pollen vectors, their interactions with them influence floral traits and also favor efficiency since many vectors are searching for floral rewards like pollen and nectar. Examples of pollinator-mediated selected traits could be those involving the size, shape, color and odor of flowers, corolla tube length and width, size of inflorescence, floral rewards and amount, nectar guides, and phenology. Since these types of traits are likely to be involved in attracting pollinators, they may very well be the result of selection by the pollinators themselves.

<span class="mw-page-title-main">Simultaneous hermaphroditism</span> One of the two types of hermaphroditism

Simultaneous hermaphroditism is one of the two types of hermaphroditism, the other type being sequential hermaphroditism. In this form of hermaphroditism an individual has sex organs of both sexes and can produce both gamete types even in the same breeding season.

Andromonoecy is a breeding system of plant species in which male and hermaphrodite flowers are on the same plant. It is a monomorphic sexual system comparable with monoecy, gynomonoecy and trimonoecy. Andromonoecy is frequent among genera with zygomorphic flowers, however it is overall rare and occurs in less than 2% of plant species. Nonetheless the breeding system has gained interest among biologists in the study of sex expression.

<span class="mw-page-title-main">Monoecy</span> Sexual system in seed plants

Monoecy is a sexual system in seed plants where separate male and female cones or flowers are present on the same plant. It is a monomorphic sexual system comparable with gynomonoecy, andromonoecy and trimonoecy, and contrasted with dioecy where individual plants produce cones or flowers of only one sex.

A sexual system is a pattern of sex allocation or a distribution of male and female function across organisms in a species. Terms like reproductive system and mating system have also been used as synonyms.

Trimonoecy, also called polygamomonoecy, is when male, female, and hermaphrodite flowers are on the same plant. Trimonoecy is rare.

Silene disticha is a species of flowering plant in the family Caryophyllaceae. The species is hermaphroditic and is native to Algeria, Morocco, Portugal, Spain, and Tunisia.

<i>Silene littorea</i> Species of flowering plant

Silene littorea is a species of flowering plant in the family Caryophyllaceae. The species is an annual plant.

<i>Silene stockenii</i> Species of flowering plant

Silene stockenii is a species of flowering plant in the Caryophyllaceae first described in 1973. The specific epithet is named after Christopher Maitland Stocken, who discovered it in 1962 in Bornos. It is native to Spain, where it is endemic to grasslands growing in calcareous soil on formations made from calcarenite west of Cádiz in Andalusia. It is currently listed as critically endangered. In 1993, the number of individuals belonging to this species was estimated to be below 2000.

<i>Silene italica</i> Species of plant

Silene italica is a species of plant native to Southern Europe and parts of Asia. It is also introduced to parts of the United States and Northern Europe.

References

  1. Allaby, Michael (2006), "gynomonoecious", A Dictionary of Plant Sciences, Oxford University Press, doi:10.1093/acref/9780198608912.001.0001, ISBN   978-0-19-860891-2 , retrieved 2021-07-15
  2. Martínez-Gómez, Pedro (2019). Plant Genetics and Molecular Breeding. MDPI. p. 442. ISBN   978-3-03921-175-3.
  3. 1 2 Torices, Rubén; Méndez, Marcos; Gómez, José María (2011). "Where do monomorphic sexual systems fit in the evolution of dioecy? Insights from the largest family of angiosperms". New Phytologist. 190 (1): 234–248. doi: 10.1111/j.1469-8137.2010.03609.x . ISSN   1469-8137. PMID   21219336.
  4. BERTIN, ROBERT I.; GWISC, GREGORY M. (2002-11-01). "Floral sex ratios and gynomonoecy in Solidago (Asteraceae)". Biological Journal of the Linnean Society. 77 (3): 413–422. doi: 10.1046/j.1095-8312.2002.00137.x . ISSN   0024-4066.
  5. Casimiro-Soriguer, Inés; Buide, Maria L.; Narbona, Eduardo (2015-01-01). "Diversity of sexual systems within different lineages of the genus Silene". AoB Plants. 7 (plv037). doi:10.1093/aobpla/plv037. ISSN   2041-2851. PMC   4433491 . PMID   25862920.
  6. Mamut, Jannathan; Tan, Dun-Yan (2014). "Gynomonoecy in angiosperms: phylogeny, sex expression and evolutionary significance". Chinese Journal of Plant Ecology. 38 (1): 76–90. doi:10.3724/SP.J.1258.2014.00008.
  7. Judd, Walter S.; Campbell, Christopher S.; Kellogg, Elizabeth A.; Stevens, Peter F.; Donoghue, Michael J. (2002). Plant systematics, a phylogenetic approach (2 ed.). Sunderland MA, USA: Sinauer Associates Inc. ISBN   0-87893-403-0.
  8. Avise, John C. (2011). Hermaphroditism: A Primer on the Biology, Ecology, and Evolution of Dual Sexuality. Columbia University Press. pp. 52–53. ISBN   978-0-231-52715-6.
  9. Ainsworth, Charles (2008-04-15). Annual Plant Reviews, Flowering and its Manipulation. John Wiley & Sons. p. 14. ISBN   978-1-4051-7240-0.
  10. Stuessy, Tod F.; Ono, Mikio (2007). Evolution and Speciation of Island Plants. Cambridge University Press. p. 63. ISBN   978-0-521-04832-3.
  11. Casimiro-Soriguer, Inés; Buide, Maria L.; Narbona, Eduardo (2015). "Diversity of sexual systems within different lineages of the genus Silene". AoB Plants. 7 (plv037). doi:10.1093/aobpla/plv037. ISSN   2041-2851. PMC   4433491 . PMID   25862920.