HLA-DQ1

Last updated
DQ Illustration.PNG
major histocompatibility complex, class II, DQ1
HaplotypesDQA1*0101:DQB1*0501 DQA1*0101:DQB1*0502 DQA1*0102:DQB1*0502 DQA1*0104:DQB1*0503 DQA1*0103:DQB1*0601 DQA1*0102:DQB1*0602 DQA1*0103:DQB1*0603 DQA1*0102:DQB1*0604 DQA1*0102:DQB1*0605 DQA1*0102:DQB1*0609....
Structure
Identifiers
alpha 1 *0101*0102*0103*0104
Symbol(s) HLA-DQA1 [ permanent dead link ]
EBI-HLA DQA1*0101
EBI-HLA DQA1*0102
EBI-HLA DQA1*0103
EBI-HLA DQA1*0104
Identifiers
beta 1 *05 or *06
Symbol(s) HLA-DQB1
EBI-HLA DQB1*05
EBI-HLA DQB1*06
Shared data
Locus chr.6 6p21.31

HLA-DQ1 is a serotype that covers a broad range of HLA-DQ haplotypes. Historically it was identified as a DR-like alpha chain called DC1; [1] later, it was among 3 types DQw1 (later DQ1, and split into DQ5 and DQ6), DQw2 and DQw3. Of these three serotyping specificities only DQw1 recognized DQ alpha chain. [2] The serotype is positive in individuals who bear the DQA1*01 alleles. The most frequently found within this group are: DQA1*0101, *0102, *0103, and *0104. In the illustration on the right, DQ1 serotyping antibodies recognizes the DQ α (magenta), where antibodies to DQA1* gene products bind variable regions close to the peptide binding pocket.

Contents

Serotypes

Some DRB1* alleles and DQ5, DQ1, DQ6 recognition [3]
DQB1*DQ5DQ1DQ6Sample
allele % % %size (N)
0501692025536
0502482415919
0503582241327
05045917248
.
DQ6DQ1DQ5N
06016423675
0602673015151
0603622322807
0604592721592
06057613358
060948323149

The serotyping efficiency of DQ1 recognition relative to DQ5 and DQ6 is listed below. Since DQ1 recognizes alpha, the DQ5 and DQ6 recognition are to beta chain. Meaning that DQ1 is corecognized with DQ5 and DQ6.

The table to the left shows some of the serotyping efficiencies. Efficient recognition of a genotyped allele approaches 100%. Compared to DQ2 serotyping of DQB1*0201 positive individuals (98%), the efficiency of DQ1 recognition is relatively low and error prone.

For this reason DQ1 serotyping is a poor method of typing for transplantation or disease association prediction or study. Nonetheless, it is still widely used and association purported in the literature.

Alleles

DQA1*0101

DQA1*0101 is commonly linked to haplotypes of DQB1*05, the common DQA1*0101:DQB1*0501 haplotype which is part of a broader DR1-DQ1 haplotype.

DQA1*0102

DQA1*0102 is associated with both DR5 and DR6.

DQA1*0102:DQB1*0502 has a bimodal distribution. It is found in the Philippines in high frequency and on the Mediterranean island of Sardinia.

DQA1*0102:DQB1*0602 is a very common haplotype in Eurasia, with higher frequency in central Asia relative to elsewhere. It is part of a European ancestral haplotype B7-DR15-DQ1 that appears to have expanded asymmetrically into Europe. The A3-B7-DR15-DQ1 haplotype indicates relationships in Eurasia that span from Korea to Ireland, indicating some common ancestry in recent times.

DQA1*0102:DQB1*0604 much less frequently found but spread widely.

DQA1*0103

DQA1*0103 (*0103) shows a negative (protective) association with many autoimmune disease, this association is apparent in Japanese studies in the *0103:DQB1*0601 haplotype, and in Europe with the *0103:DQB1*0603 haplotype, indicating the protective effect is influenced by the alpha chain of DQ. DQA1*0103 is protective against Behçet's disease, [4] [5] pemphigus vulgaris, [6] juvenile diabetes, [7] [8] steroid-sensitive nephrotic syndrome, [9] myasthenia gravis [10] coeliac disease [11] multiple sclerosis, [12] chronic active hepatitis C, [13] and Vogt–Koyanagi–Harada syndrome. [14] However, it may predispose carriers to chronic infection such as leprosy, [15] Helicobacter pylori-positive gastric lymphoma, [16] and AIDS. [17]

DQA1*0103:DQB1*0601 is part of a multigene haplotype (DRB1*1502:DRB5*0102:DQA1*0103:DQB1*0601:DPA1*02:DPB1*0901) linked to Takayasu's arteritis in Japanese. [18] Another haplotype, DR8-DQ1 which contains this haplotype may be associated with primary biliary cirrhosis, [19] Graves' disease [20] There is a negative association of this DR15-DQ1 haplotype in Japanese with inflammatory bowel disease. [21]

DQA1*0103:DQB1*0603 is part of a DR-DQ haplotype (DR13-DQ1) that increases for primary sclerosing cholangitis [22] [23] The same haplotype shows a negative association with rheumatic heart disease, [24]

DQA1*0104

DQA1*0104:DQB1*0503 is part of a multigene haplotype DR14-DQ5 that is associated with MuSK positive Myasthenia gravis.

Related Research Articles

HLA-DQ Cell surface receptor protein found on antigen-presenting cells.

HLA-DQ (DQ) is a cell surface receptor protein found on antigen-presenting cells. It is an αβ heterodimer of type MHC class II. The α and β chains are encoded by two loci, HLA-DQA1 and HLA-DQB1, that are adjacent to each other on chromosome band 6p21.3. Both α-chain and β-chain vary greatly. A person often produces two α-chain and two β-chain variants and thus 4 isoforms of DQ. The DQ loci are in close genetic linkage to HLA-DR, and less closely linked to HLA-DP, HLA-A, HLA-B and HLA-C.

HLA DR3-DQ2 is double serotype that specifically recognizes cells from individuals who carry a multigene HLA DR, DQ haplotype. Certain HLA DR and DQ genes have known involvement in autoimmune diseases. DR3-DQ2, a multigene haplotype, stands out in prominence because it is a factor in several prominent diseases, namely coeliac disease and juvenile diabetes. In coeliac disease, the DR3-DQ2 haplotype is associated with highest risk for disease in first degree relatives, highest risk is conferred by DQA1*0501:DQB1*0201 homozygotes and semihomozygotes of DQ2, and represents the overwhelming majority of risk. HLA DR3-DQ2 encodes DQ2.5cis isoform of HLA-DQ, this isoform is described frequently as 'the DQ2 isoform', but in actuality there are two major DQ2 isoform. The DQ2.5 isoform, however, is many times more frequently associated with autoimmune disease, and as a result to contribution of DQ2.2 is often ignored.

HLA-DQ8

HLA-DQ8 (DQ8) is a human leukocyte antigen serotype within the HLA-DQ (DQ) serotype group. DQ8 is a split antigen of the DQ3 broad antigen. DQ8 is determined by the antibody recognition of β8 and this generally detects the gene product of DQB1*0302.

HLA-DQ2

HLA-DQ2 (DQ2) is a serotype group within HLA-DQ (DQ) serotyping system. The serotype is determined by the antibody recognition of β2 subset of DQ β-chains. The β-chain of DQ is encoded by HLA-DQB1 locus and DQ2 are encoded by the HLA-DQB1*02 allele group. This group currently contains two common alleles, DQB1*0201 and DQB1*0202. HLA-DQ2 and HLA-DQB1*02 are almost synonymous in meaning. DQ2 β-chains combine with α-chains, encoded by genetically linked HLA-DQA1 alleles, to form the cis-haplotype isoforms. These isoforms, nicknamed DQ2.2 and DQ2.5, are also encoded by the DQA1*0201 and DQA1*0501 genes, respectively.

HLA-DQ4

HLA-DQ4 (DQ4) is a serotype subgroup within HLA-DQ(DQ) serotypes. The serotype is determined by the antibody recognition of β4 subset of DQ β-chains. The β-chain of DQ is encoded by HLA-DQB1 locus and DQ4 are encoded by the HLA-DQB1*04 allele group. This group currently contains 2 common alleles, DQB1*0401 and DQB1*0402. HLA-DQ4 and HLA-DQB1*04 are almost synonymous in meaning. DQ4 β-chains combine with α-chains, encoded by genetically linked HLA-DQA1 alleles, to form the cis-haplotype isoforms. These isoforms, nicknamed DQ4.3 and DQ4.4, are also encoded by the DQA1*0303 and DQA1*0401 genes, respectively.

HLA-DQ6

HLA-DQ6 (DQ6) is a human leukocyte antigen serotype within HLA-DQ (DQ) serotype group. The serotype is determined by the antibody recognition of β6 subset of DQ β-chains. The β-chain of DQ isoforms are encoded by HLA-DQB1 locus and DQ6 are encoded by the HLA-DQB1*06 allele group. This group currently contains many common alleles, DQB1*0602 is the most common. HLA-DQ6 and DQB1*06 are almost synonymous in meaning. DQ6 β-chains combine with α-chains, encoded by genetically linked HLA-DQA1 alleles, to form the cis-haplotype isoforms. For DQ6, however, cis-isoform pairing only occurs with DQ1 α-chains. There are many haplotypes of DQ6.

HLA-DQ9

HLA-DQ9 (DQ9) is a human leukocyte antigen serotype within the HLA-DQ (DQ) serotype group. DQ9 is a split antigen of the DQ3 broad antigen. DQ9 is determined by the antibody recognition of β9 and this generally detects the gene product of DQB1*0303.

HLA-DQ7

HLA-DQ7 (DQ7) is an HLA-DQ serotype that recognizes the common HLA DQB1*0301 and the less common HLA DQB1*0304 gene products. DQ7 is a form of 'split antigen' of the broad antigen group DQ3 which also contains DQ8 and DQ9.

HLA-DR17

HLA-DR17 (DR17) is an HLA-DR serotype that recognizes the DRB1*0301 and *0304 gene products. DR17 is found at high frequency in Western Europe. DR17 is part of the broader antigen group HLA-DR3 and is very similar to the group HLA-DR18.

HLA-DR16

HLA-DR16(DR16) is a HLA-DR serotype that recognizes the DRB1*1601, *1602 and *1604 gene products. DR16 is found in the Mediterranean at modest frequencies. DR16 is part of the older HLA-DR2 serotype group which also contains the similar HLA-DR15 antigens.

HLA-DR15

HLA-DR15 (DR15) is a HLA-DR serotype that recognizes the DRB1*1501 to *1505 and *1507 gene products. DR15 is found at high levels from Ireland to Central Asia. DR15 is part of the older HLA-DR2 serotype group which also contains the similar HLA-DR16 antigens.

HLA-DR12

HLA-DR12(DR12) is a HLA-DR serotype that recognizes the DRB1*1201 to *1203, *1206. DR12 serotype is a split antigen of the older HLA-DR5 serotype group which also contains the similar HLA-DR11 antigens.

HLA-DR3

HLA-DR3 is composed of the HLA-DR17 and HLA-DR18 split 'antigens' serotypes. DR3 is a component gene-allele of the AH8.1 haplotype in Northern and Western Europeans. Genes between B8 and DR3 on this haplotype are frequently associated with autoimmune disease. Type 1 diabetes mellitus is strongly associated with HLA-DR3 or HLA-DR4.

HLA-DR4

HLA-DR4 (DR4) is an HLA-DR serotype that recognizes the DRB1*04 gene products. The DR4 serogroup is large and has a number of moderate frequency alleles spread over large regions of the world.

HLA-A3

HLA-A3 (A3) is a human leukocyte antigen serotype within HLA-A serotype group. The serotype is determined by the antibody recognition of α3 subset of HLA-A α-chains. For A3, the alpha, "A", chain are encoded by the HLA-A*03 allele group and the β-chain are encoded by B2M locus. This group currently is dominated by A*0301. A3 and A*03 are almost synonymous in meaning. A3 is more common in Europe, it is part of the longest known multigene haplotype, A3-B7-DR15-DQ6.

HLA-A33

HLA-A33 (A33) is a human leukocyte antigen serotype within HLA-A serotype group. The serotype is determined by the antibody recognition of α33 subset of HLA-A α-chains. For A33, the alpha "A" chain are encoded by the HLA-A*33 allele group and the β-chain are encoded by B2M locus. A33 and A*33 are almost synonymous in meaning. A33 is a split antigen of the broad antigen serotype A19. A33 is a sister serotype of A29, A30, A31, A32, and A74.

HLA-B46 (B46) is an HLA-B serotype. The serotype identifies the gene products of HLA-B*4601 allele. B*4601 resulted from a rare, interlocus, gene conversion between B62, probably B*1501, and a HLA-C allele. B*4601 is the most common HLA-B allele that does not have an origin within Africa, and estimated 400 million people in Eastern Asia carry a B46 allele. When found B*4601 segregates with only 2 HLA-Cw alleles, A limited number of HLA-A and HLA-DRB1 alleles suggesting that the allele recently expanded from a limited sized group within SE Asia. Extremely low frequencies outside of Eastern Asia are indicators of a recent expansion of B46 from a recently small population. The frequency distribution suggests the ancestral B46 population was in SE China, or, potentially Burma. B46 in Asia correlates with wet-rice farming. The exceptions are notable, it has been found in the Nivkhi on north-eastern Sakalin Island, the Ainu, and the Nivkhi-related (genetically) Tlinglet population of Alaska at trace levels.

HLA-B7

HLA-B7 (B7) is an HLA-B serotype. The serotype identifies the more common HLA-B*07 gene products. B7, previously HL-A7, was one of the first 'HL-A' antigens recognized, largely because of the frequency of B*0702 in Northern and Western Europe and the United States. B7 is found in two major haplotypes in Europe, where it reaches peak frequency in Ireland. One haplotype A3-B7-DR15-DQ1 can be found over a vast region and is in apparent selective disequilibrium. B7 is a risk factor for cervical cancer, sarcoidosis, and early-onset spondylarthropathies.

HLA-B45

HLA-B45 (B45) is an HLA-B serotype. The serotype identifies the B*45 gene-allele protein products of HLA-B.

HLA B7-DR15-DQ6 is a multigene haplotype that covers a majority of the human major histocompatibility complex on chromosome 6. A multigene haplotype is set of inherited alleles covering several genes, or gene-alleles, common multigene haplotypes are generally the result of descent by common ancestry. Chromosomal recombination fragments multigene haplotypes as the distance to that ancestor increases in number of generations.

References

  1. Trowsdale J, Lee J, Carey J, Grosveld F, Bodmer J, Bodmer W (1983). "Sequences related to HLA-DR alpha chain on human chromosome 6: restriction enzyme polymorphism detected with DC alpha chain probes". Proc. Natl. Acad. Sci. U.S.A. 80 (7): 1972–6. Bibcode:1983PNAS...80.1972T. doi: 10.1073/pnas.80.7.1972 . PMC   393734 . PMID   6300884.
  2. Möller E, Carlsson B, Wallin J (1985). "Implication of structural class II gene polymorphism for the concept of serologic specificities". Immunol. Rev. 85: 107–28. doi:10.1111/j.1600-065X.1985.tb01132.x. PMID   2412948. S2CID   20971131.
  3. derived from IMGT/HLA
  4. Mizuki N, Ohno S, Tanaka H, et al. (1992). "Association of HLA-B51 and lack of association of class II alleles with Behçet's disease". Tissue Antigens. 40 (1): 22–30. doi:10.1111/j.1399-0039.1992.tb01953.x. PMID   1359669.
  5. Mizuki N, Inoko H, Mizuki N, et al. (1992). "Human leukocyte antigen serologic and DNA typing of Behçet's disease and its primary association with B51". Invest. Ophthalmol. Vis. Sci. 33 (12): 3332–40. PMID   1358857.
  6. Niizeki H, Inoko H, Mizuki N, et al. (1994). "HLA-DQA1, -DQB1 and -DRB1 genotyping in Japanese pemphigus vulgaris patients by the PCR-RFLP method". Tissue Antigens. 44 (4): 248–51. doi:10.1111/j.1399-0039.1994.tb02390.x. PMID   7871526.
  7. Gaber SA, Mazzola G, Berrino M, et al. (1994). "Human leukocyte antigen class II polymorphisms and genetic susceptibility of IDDM in Egyptian children". Diabetes Care. 17 (11): 1341–4. doi:10.2337/diacare.17.11.1341. PMID   7821177. S2CID   25150033.
  8. Chuang LM, Jou TS, Wu HP, et al. (1995). "HLA DQA1 genotypes and its interaction with HLA DQB1 in Chinese IDDM living in Taiwan". Proc. Natl. Sci. Counc. Repub. China B. 19 (2): 73–9. PMID   7624445.
  9. Abe KK, Michinaga I, Hiratsuka T, et al. (1995). "Association of DQB1*0302 alloantigens in Japanese pediatric patients with steroid-sensitive nephrotic syndrome". Nephron. 70 (1): 28–34. doi:10.1159/000188540. PMID   7617114.
  10. Hjelmström P, Giscombe R, Lefvert AK, et al. (1995). "Different HLA-DQ are positively and negatively associated in Swedish patients with myasthenia gravis". Autoimmunity. 22 (1): 59–65. doi:10.3109/08916939508995300. PMID   8882423.,
  11. Nieto A, Blanco Quirós A, Arranz E, Alonso Franch M, Garrote JA, Calvo C (1995). "Study of HLA-DQA1 alleles in celiac children". Journal of Investigational Allergology and Clinical Immunology. 5 (4): 209–15. PMID   8705011.
  12. Saruhan-Direskeneli G, Esin S, Baykan-Kurt B, Ornek I, Vaughan R, Eraksoy M (1997). "HLA-DR and -DQ associations with multiple sclerosis in Turkey". Hum. Immunol. 55 (1): 59–65. doi:10.1016/S0198-8859(97)00086-4. PMID   9328791.
  13. Höhler T, Gerken G, Notghi A, et al. (1997). "MHC class II genes influence the susceptibility to chronic active hepatitis C". J. Hepatol. 27 (2): 259–64. doi:10.1016/S0168-8278(97)80169-9. PMID   9288598.
  14. Kim MH, Seong MC, Kwak NH, et al. (2000). "Association of HLA with Vogt-Koyanagi-Harada syndrome in Koreans". Am. J. Ophthalmol. 129 (2): 173–7. doi:10.1016/S0002-9394(99)00434-1. PMID   10682969.
  15. Rani R, Fernandez-Vina MA, Zaheer SA, Beena KR, Stastny P (1993). "Study of HLA class II alleles by PCR oligotyping in leprosy patients from north India". Tissue Antigens. 42 (3): 133–7. doi:10.1111/j.1399-0039.1993.tb02179.x. PMID   8284786.
  16. Kawahara Y, Mizuno M, Yoshino T, et al. (2005). "HLA-DQA1*0103-DQB1*0601 haplotype and Helicobacter pylori-positive gastric mucosa-associated lymphoid tissue lymphoma". Clin. Gastroenterol. Hepatol. 3 (9): 865–8. doi:10.1016/S1542-3565(05)00185-0. PMID   16234023.
  17. Kroner BL, Goedert JJ, Blattner WA, Wilson SE, Carrington MN, Mann DL (1995). "Concordance of human leukocyte antigen haplotype-sharing, CD4 decline and AIDS in hemophilic siblings. Multicenter Hemophilia Cohort and Hemophilia Growth and Development Studies". AIDS. 9 (3): 275–80. doi:10.1097/00002030-199509030-00009. PMID   7755916.
  18. Dong RP, Kimura A, Numano F, Nishimura Y, Sasazuki T (1992). "HLA-linked susceptibility and resistance to Takayasu arteritis". Heart and Vessels. Supplement. 7: 73–80. doi:10.1007/BF01744548. PMID   1360976. S2CID   22943921.
  19. Onishi S, Sakamaki T, Maeda T, et al. (1994). "DNA typing of HLA class II genes; DRB1*0803 increases the susceptibility of Japanese to primary biliary cirrhosis". J. Hepatol. 21 (6): 1053–60. doi:10.1016/S0168-8278(05)80617-8. PMID   7699227.
  20. Katsuren E, Awata T, Matsumoto C, Yamamoto K (1994). "HLA class II alleles in Japanese patients with Graves' disease: weak associations of HLA-DR and -DQ". Endocr. J. 41 (6): 599–603. doi: 10.1507/endocrj.41.599 . PMID   7704083.
  21. Yoshitake S, Kimura A, Okada M, Yao T, Sasazuki T (1999). "HLA class II alleles in Japanese patients with inflammatory bowel disease". Tissue Antigens. 53 (4 Pt 1): 350–8. doi:10.1034/j.1399-0039.1999.530405.x. PMID   10323339.
  22. Olerup O, Olsson R, Hultcrantz R, Broome U (1995). "HLA-DR and HLA-DQ are not markers for rapid disease progression in primary sclerosing cholangitis". Gastroenterology. 108 (3): 870–8. doi:10.1016/0016-5085(95)90463-8. PMID   7875491.
  23. Spurkland A, Saarinen S, Boberg KM, et al. (1999). "HLA class II haplotypes in primary sclerosing cholangitis patients from five European populations". Tissue Antigens. 53 (5): 459–69. doi:10.1034/j.1399-0039.1999.530502.x. PMID   10372541.
  24. Guédez Y, Kotby A, El-Demellawy M, et al. (1999). "HLA class II associations with rheumatic heart disease are more evident and consistent among clinically homogeneous patients". Circulation. 99 (21): 2784–90. doi: 10.1161/01.cir.99.21.2784 . PMID   10351973.