Haeco-CSG

Last updated

The Haeco-CSG Generator. HAECOCSG.JPG
The Haeco-CSG Generator.

The Haeco-CSG or Holzer Audio Engineering-Compatible Stereo Generator system was an electronic analog audio signal processing device developed by Howard Holzer, Chief Engineer at A&M Records in Hollywood, California.

Contents

His company, Holzer Audio Engineering, developed the system in the 1960s during the years of transition from mono to stereophonic sound in popular music recording. The process was used primarily from about 1968 until 1970 but still exists on a significant number of recordings made during the time.

Reasons for using the system

The Haeco-CSG process was designed to make stereophonic vinyl LP records compatible with mono playback equipment. These recordings were intended to make the two-channel stereo mix automatically "fold-down" properly to a single mono channel.

The reason for the process is the compatibility issue between stereophonic and monaural recordings: information which is identical on both the left and right channels of a stereophonic mix was considered to be too loud when played back on mono AM and FM radio stations and phonographs. When the left and right channels are summed together, any musical parts that are common to both channels combine to be 6 decibels louder than they are in the same mix when played in stereo (a phenomenon known as "center-channel buildup"). Vocals, solo instruments and bass lines are often mixed equally to both stereo channels — these sounds were contended to be too loud when heard in mono.

In the 1960s and early 1970s it was common practice for recording engineers and producers to create separate mono and stereo mixes of the same record. This was due, in part, to the center channel buildup issue. However, other technical concerns with the differences between stereo and mono record playback also influenced this decision.

The Haeco-CSG system appeared to be an attractive option for record companies and retailers by allowing them to cut costs. Engineers could produce a single mix, record companies could manufacture and distribute one version, and vendors could stock one product.

How the technology works

Haeco-CSG technology works on the basis of phase cancellation. When two waves that are not in phase are mixed, the resulting waveform has an attenuation in accordance to the degree of shift. For example, two waves which are 180 degrees out of phase will entirely cancel out when mixed together whereas two waves which are entirely in phase will double in amplitude. A difference in phase between 180 and 0 degrees results in a partial cancellation, which is the effect Haeco-CSG takes advantage of.

The system electrically rotated the waveform of the right channel by up to 120 degrees to control the buildup of center information during a simple mono downmix. It is not fully known how exactly the circuit accomplished this, however a technician who worked there in 1972–1973, indicates here that the CSG appeared to have split one stereo channel into up to 8 single octave channels followed by eight ganged selectable phase shift networks, controlled via front panel setting. Then a summing amplifier was used for recombination of multiple audio channels into one, followed by a transformer isolated balanced output. The other channel was not encoded and simply passed thru, via another audio transformer. This is how the effect could be encoded without slightly delaying one channel, which would have only provided close enough to 90 degree phase shift within less than an octave and somewhere between 0 and 180 degrees of phase shift is approached at the highest and lowest frequencies in the audio spectrum. A later version, the CSG-2 in R&D in 1973 may have encoded both audio channels, but may have used half the phase shift per channel, and perhaps provided a smoother frequency response.

The most common listing of 90 degrees out of phase corresponds to Haeco's own recommended [1] setting of the +3 dB build up, whereas no build-up would require a 120 degree offset. This setting was most commonly used because of its robustness against polarity reversal of audio interconnects down the chain, which can affect the resulting audio when downmixed to mono. Information that is not common to both channels is entirely unaffected as there is no offset phase wave to cancel with.

The genius of Holzer's design is in how it overcame the limitations of a single phase shift network to shift the entire audio bandwidth. A phase shift network is composed of a resistive and a reactive circuit element, either a capacitor or an inductor. Relative values of the two will cause a phase shift (i.e. 90 degrees) at some given frequency that is easily calculated. But the amount of phase shift varies with the frequencies above or below that pass through it, relative to the intended phase shift. So a fairly consistent phase delay over the entire audio bandwidth was achieved by using multiple phase delay networks with audio bands restricted to the allowable deviation in desired phase shift versus permissible flatness of the audio response.

Negative effects

Generally speaking, Haeco-CSG has a degrading effect on the performance of both stereo and mono sounds processed through the system. The effect can vary substantially from one recording to another depending on the characteristics of the original unprocessed sound. The system "blurs" the focus of lead vocals or other sounds mixed to the center of a stereo recording. This is the main reason why Haeco-CSG was usually applied to recordings with bass positioned in one channel only. Bass frequencies are usually centered on modern recordings. The effect today would cause a significant loss of low frequency information, making the resulting sound somewhat "tinny". Negative effects of the system can be heard on any stereo speaker system, but makes headphone listening particularly un-natural sounding. This is because the lead vocalist or performer's audio waveform would be attempting to partially cancel itself inside the listener's head, confusing the brain's audio positioning sense.

Due to complicated interaction of phase and frequency it is difficult to predict exactly how the reduction from two channels to one will affect the sound of a particular instrument. Therefore mono sound from a true mono mix is preferable to the use of the Haeco-CSG stereo to mono process.

Known recordings

Atlantic Records took out a full page advertisement in the 6 April 1968 issue of Billboard magazine to promote its adoption of the technique, calling it "CSG Stereo". [2] Many A&M Records LP releases during the period including popular titles by Sérgio Mendes and Herb Alpert were released with this audio process starting in September 1968. Other record labels soon followed suit, and an estimated 10% of all stereophonic albums released during the late 1960s and early 1970s employed the system. Other labels known to have used the system include Warner Bros. Records and Reprise Records.

One of the biggest selling albums using the process is The Association's Greatest Hits , released in 1968. This recording has sold more than 2 million copies in the United States. The process was also used on the 1968 Frank Sinatra album Cycles as well as on most of the studio recordings on Wheels of Fire by Cream. Early 1968 copies of Neil Young's self-titled debut album also used the system.

Use of Haeco-CSG in promotional recordings for radio

The original intention of using Haeco-CSG on commercial LP releases was rather short lived, however, use of the process continued well into the mid-1970s on promotional records sent to radio stations. Many commercial FM Rock stations did not transition from mono to stereo broadcasting until the mid to late 1970s. AM Pop music stations continued to broadcast in mono, as AM stereo broadcasting was not introduced until 1982 and was never widely adopted.

Many promotional singles and some commercial singles from the Warner/Reprise/Atlantic label group from this era had "CSG Mono Process" or "CSG Process" printed on the labels. Artists included Frank Sinatra, Gordon Lightfoot, James Taylor, Seals and Crofts. Warner subsidiary labels such as Atlantic issued a series of mono radio station promotional LPs by progressive rock artists circa 1968–1971. The series included titles by Led Zeppelin, Yes, King Crimson and many others. In 1979, the Warner distributed label Sire Records issued a promotional single of "Pop Muzik" by M which contains both short and long versions in CSG processed stereo. This may be the latest known recording to utilize the CSG stereo process.[ citation needed ]

Modern remastering without Haeco-CSG

Haeco-CSG can be applied during the mastering stage, near the end of the record production chain. In such cases, the earliest stereo master tapes exist without processing. Therefore, the process can be avoided entirely when such recordings are remastered for compact disc. Remastering without the effect requires a well informed audio engineer who makes an effort to locate the correct master tapes.

However the Haeco-CSG processing was often applied at the master tape mix session. This, in effect, makes it a permanent part of the stereo recording. But, the process can still be reversed through modern digital reprocessing. Unfortunately, many compact discs of these processed albums still are encoded with the system, causing negative effects even on modern digital playback systems.

Digital reprocessing

Haeco-CSG processing can be reversed through digital audio workstation software by digitally re-rotating phase of the right channel back by the correct number of degrees.

The phase module of iZotope RX allows a user to fully adjust the phase of each stereo audio channel independently.

Adobe Audition is able to remove the effect using the Graphic Panner tool (the Automatic Phase Correction tool is unable to accurately do this) by manually selecting the "Phase 90 degrees" preset. The "Auto Center Phase" and "Learn Phase" features will also work, but are not recommended. There are sometimes slight offsets caused by various mixing effects and, to a lesser extent, tape-head misalignment; studio reverb or naturally decaying reverb is a prime example. As a waveform decays in a large room, it naturally changes phase. In Auto Center phase, this is (generally) shown as the upper frequencies making a drastic change. Tape head misalignment (azimuth) also will cause a phase change in upper frequencies. One should be aware of this when attempting to remove Haeco processing and not use auto-phase options. Azimuth alignment adjustment tools can however be used AFTER Haeco has been removed.

The "Stereo Tool" plug-in used with Winamp is able to reverse Haeco-CSG. Enable the "Stereo Image Processing" option and adjust the "Angle" setting right to 90 degrees. By adjusting the Winamp plug-in settings under the "Preferences" tab to "out_disk" it is possible to capture the reprocessed audio to a new file.

Orban Optimod-PCn (x86 Native) Professional Broadcast Audio Processing Software can be used to effectively remove all HAECO-CSG as well as any other phase/azimuth errors, all automatically. There is no need for any time or angle settings. The result is always perfect stereo that is perfect mono downmix capable. A description and examples are available at the StreamIndex website.

One can also use a simple channel mixer found in most workstations to do a simple correction. By having each channel contain 75% of itself and 25% of the other channel, the "blended" result will be mostly in phase. This, however, will cause the stereo separation to be somewhat diminished.

Use today

While the system is no longer in use anywhere today, the basic idea of shifting the phase to create a mono downmix can be applied today if one has a reason to do so. The "encoding" process is similar to the "decoding" process in the application of a 90 or 120 degree phase shift followed by averaging the channels together in a channel mixer.

"Expanded discussion on C.S.G. at Steve Hoffman Forums".

Related Research Articles

<span class="mw-page-title-main">Quadraphonic sound</span> Four-channel speaker audio

Quadraphonic sound – equivalent to what is now called 4.0 surround sound – uses four audio channels in which speakers are positioned at the four corners of a listening space. The system allows for the reproduction of sound signals that are independent of one another.

<span class="mw-page-title-main">Ambisonics</span> Full-sphere surround sound format

Ambisonics is a full-sphere surround sound format: in addition to the horizontal plane, it covers sound sources above and below the listener.

<span class="mw-page-title-main">Surround sound</span> System with loudspeakers that surround the listener

Surround sound is a technique for enriching the fidelity and depth of sound reproduction by using multiple audio channels from speakers that surround the listener. Its first application was in movie theaters. Prior to surround sound, theater sound systems commonly had three screen channels of sound that played from three loudspeakers located in front of the audience. Surround sound adds one or more channels from loudspeakers to the side or behind the listener that are able to create the sensation of sound coming from any horizontal direction around the listener.

Flanging is an audio effect produced by mixing two identical signals together, one signal delayed by a small and (usually) gradually changing period, usually smaller than 20 milliseconds. This produces a swept comb filter effect: peaks and notches are produced in the resulting frequency spectrum, related to each other in a linear harmonic series. Varying the time delay causes these to sweep up and down the frequency spectrum. A flanger is an effects unit that creates this effect.

Multichannel Television Sound (MTS) is the method of encoding three additional audio channels into analog 4.5 MHz audio carriers on System M and System N.The system was developed by an industry group known as the Broadcast Television Systems Committee (BTSC), a parallel to color television's National Television System Committee, which developed the NTSC television standard.

<span class="mw-page-title-main">Monaural sound</span> Sound intended to be heard as if it were emanating from one position

Monaural sound or monophonic sound is sound intended to be heard as if it were emanating from one position. This contrasts with stereophonic sound or stereo, which uses two separate audio channels to reproduce sound from two microphones on the right and left side, which is reproduced with two separate loudspeakers to give a sense of the direction of sound sources. In mono, only one loudspeaker is necessary, but, when played through multiple loudspeakers or headphones, identical audio signals are fed to each speaker, resulting in the perception of one-channel sound "imaging" in one sonic space between the speakers. Monaural recordings, like stereo ones, typically use multiple microphones fed into multiple channels on a recording console, but each channel is "panned" to the center. In the final stage, the various center-panned signal paths are usually mixed down to two identical tracks, which, because they are identical, are perceived upon playback as representing a single unified signal at a single place in the soundstage. In some cases, multitrack sources are mixed to a one-track tape, thus becoming one signal. In the mastering stage, particularly in the days of mono records, the one- or two-track mono master tape was then transferred to a one-track lathe used to produce a master disc intended to be used in the pressing of a monophonic record. Today, however, monaural recordings are usually mastered to be played on stereo and multi-track formats, yet retain their center-panned mono soundstage characteristics.

Dolby Pro Logic is a surround sound processing technology developed by Dolby Laboratories, designed to decode soundtracks encoded with Dolby Surround. The terms Dolby Stereo and LtRt are also used to describe soundtracks that are encoded using this technique.

Near Instantaneous Companded Audio Multiplex (NICAM) is an early form of lossy compression for digital audio. It was originally developed in the early 1970s for point-to-point links within broadcasting networks. In the 1980s, broadcasters began to use NICAM compression for transmissions of stereo TV sound to the public.

Matrix decoding is an audio technology where a small number of discrete audio channels are decoded into a larger number of channels on play back. The channels are generally, but not always, arranged for transmission or recording by an encoder, and decoded for playback by a decoder. The function is to allow multichannel audio, such as quadraphonic sound or surround sound to be encoded in a stereo signal, and thus played back as stereo on stereo equipment, and as surround on surround equipment – this is "compatible" multichannel audio.

<span class="mw-page-title-main">Stereophonic sound</span> Method of sound reproduction using two audio channels

Stereophonic sound, or more commonly stereo, is a method of sound reproduction that recreates a multi-directional, 3-dimensional audible perspective. This is usually achieved by using two independent audio channels through a configuration of two loudspeakers in such a way as to create the impression of sound heard from various directions, as in natural hearing.

A phaser is an electronic sound processor used to filter a signal by creating a series of peaks and troughs in the frequency spectrum. The position of the peaks and troughs of the waveform being affected is typically modulated by an internal low-frequency oscillator so that they vary over time, creating a sweeping effect.

Dolby Stereo is a sound format made by Dolby Laboratories. It is a unified brand for two completely different basic systems: the Dolby SVA 1976 system used with optical sound tracks on 35mm film, and Dolby Stereo 70mm noise reduction on 6-channel magnetic soundtracks on 70mm prints.

Duophonic sound was a trade name for a type of audio signal processing used by Capitol Records on certain releases and re-releases of mono recordings issued during the 1960s and 1970s. In this process monaural recordings were reprocessed into a type of artificial stereo. Generically, the sound is commonly known as fake stereo or mock stereo. Capitol Studios' staff engineer John Palladino created the process at the request of the record companies.

<span class="mw-page-title-main">Microphone practice</span> Microphone techniques used for recording audio

There are a number of well-developed microphone techniques used for recording musical, film, or voice sources or picking up sounds as part of sound reinforcement systems. The choice of technique depends on a number of factors, including:

MPEG Surround, also known as Spatial Audio Coding (SAC) is a lossy compression format for surround sound that provides a method for extending mono or stereo audio services to multi-channel audio in a backwards compatible fashion. The total bit rates used for the core and the MPEG Surround data are typically only slightly higher than the bit rates used for coding of the core. MPEG Surround adds a side-information stream to the core bit stream, containing spatial image data. Legacy stereo playback systems will ignore this side-information while players supporting MPEG Surround decoding will output the reconstructed multi-channel audio.

Ambisonic UHJ format is a development of the Ambisonic surround sound system designed to be compatible with mono and stereo media. It is a hierarchy of systems in which the recorded soundfield will be reproduced with a degree of accuracy that varies according to the available channels. Although UHJ permits the use of up to four channels, only the 2-channel variant is in current use. In Ambisonics, UHJ is also known as "C-Format".

<span class="mw-page-title-main">Stereo Quadraphonic</span> Matrix 4-channel quadraphonic sound system

SQ Quadraphonic was a matrix 4-channel quadraphonic sound system for vinyl LP records. It was introduced by CBS Records in 1971. Many recordings using this technology were released on LP during the 1970s.

<span class="mw-page-title-main">Audio mixing (recorded music)</span> Audio mixing to yield recorded sound

In sound recording and reproduction, audio mixing is the process of optimizing and combining multitrack recordings into a final mono, stereo or surround sound product. In the process of combining the separate tracks, their relative levels are adjusted and balanced and various processes such as equalization and compression are commonly applied to individual tracks, groups of tracks, and the overall mix. In stereo and surround sound mixing, the placement of the tracks within the stereo field are adjusted and balanced. Audio mixing techniques and approaches vary widely and have a significant influence on the final product.

In audio engineering, joint encoding is the joining of several channels of similar information during encoding in order to obtain higher quality, a smaller file size, or both.

Out of Phase Stereo (OOPS) is an audio technique which manipulates the phase of a stereo audio track, to isolate or remove certain components of the stereo mix. It works on the principle of phase cancellation, in which two identical but inverted waveforms summed together will "cancel the other out".

References

  1. "C.S.G. Instructions" (PDF). Library - Manuals. Van Nuys, California, USA: Holzer Audio Engineering Corporation (HAECO). Archived (PDF) from the original on 2016-03-03. Retrieved 2009-02-09 via Audio Rents. (8 pages)
  2. "Atlantic Records introduces CSG STEREO LP's and 45's". Billboard (advertisement). Vol. 74. 1968-04-06. Archived from the original on 2021-05-09. Retrieved 2021-05-09.