Hair dye stripping

Last updated

Hair dye stripping is a process used to rid the hair of unwanted deposited color.[ citation needed ]

Contents

Procedure

Hair dye stripping is a chemical process involving the application of a sulfur-based product to hair in order to remove deposited color. Hair dye strippers raise sulfite levels to make hair more porous and reverse the oxidation of color molecules. This breaks the bonds dyes form between one another and the hair shaft that were formed by oxidizing small hair color intermediates, [1] shrinking the molecules and allowing hair color to be washed out of the hair. [2] Because of the chemical nature of hair dye strippers, they are effective on both newly dyed hair and older dye.

Note that this type of color correction is ineffective on hair lightened with hydrogen peroxide, as hair bleaching is an irreversible chemical reaction that oxidizes hair's melanin, effectively rendering it colorless. [3] Most color depositing dyes use a weak hydrogen peroxide-based developer, or oxidizing agent, so results may not match natural hair color.

Notes for usage

It is advisable to follow color removal with a clear color filler before attempting to color hair again because hair will be more porous and re-dyed hair may darken more intensely and quickly. Additionally, hair dye stripping products often have a strong, lingering odor reminiscent of rotting eggs due to their sulfuric nature.

Caution

Hair dye strippers contain chemical irritants. Avoid direct skin contact and use in well-ventilated areas.

Related Research Articles

<span class="mw-page-title-main">Catalysis</span> Process of increasing the rate of a chemical reaction

Catalysis is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst. Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quickly, very small amounts of catalyst often suffice; mixing, surface area, and temperature are important factors in reaction rate. Catalysts generally react with one or more reactants to form intermediates that subsequently give the final reaction product, in the process regenerating the catalyst.

<span class="mw-page-title-main">Hydrogen peroxide</span> Chemical compound

Hydrogen peroxide is a chemical compound with the formula H2O2. In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution in water for consumer use, and in higher concentrations for industrial use. Concentrated hydrogen peroxide, or "high-test peroxide", decomposes explosively when heated and has been used as a propellant in rocketry.

Nitric acid is the inorganic compound with the formula HNO3. It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available nitric acid has a concentration of 68% in water. When the solution contains more than 86% HNO3, it is referred to as fuming nitric acid. Depending on the amount of nitrogen dioxide present, fuming nitric acid is further characterized as red fuming nitric acid at concentrations above 86%, or white fuming nitric acid at concentrations above 95%.

<span class="mw-page-title-main">Sulfur</span> Chemical element, symbol S and atomic number 16

Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula S8. Elemental sulfur is a bright yellow, crystalline solid at room temperature.

<span class="mw-page-title-main">Sulfuric acid</span> Chemical compound

Sulfuric acid or sulphuric acid, known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formula H2SO4. It is a colorless, odorless and viscous liquid that is miscible with water.

<span class="mw-page-title-main">Indigo dye</span> Chemical compound, food additive and dye

Indigo dye is an organic compound with a distinctive blue color. Historically, indigo was a natural dye extracted from the leaves of some plants of the Indigofera genus, in particular Indigofera tinctoria; dye-bearing Indigofera plants were commonly grown and used throughout the world, in Asia in particular, as an important crop, with the production of indigo dyestuff economically important due to the previous rarity of some blue dyestuffs historically.

<span class="mw-page-title-main">Redox</span> Chemical reaction in which oxidation states of atoms are changed

Redox is a type of chemical reaction in which the oxidation states of substrate change.

<span class="mw-page-title-main">Chemiluminescence</span> Emission of light as a result of a chemical reaction

Chemiluminescence is the emission of light (luminescence) as the result of a chemical reaction. There may also be limited emission of heat. Given reactants A and B, with an excited intermediate ,

The term chromic acid is usually used for a mixture made by adding concentrated sulfuric acid to a dichromate, which may contain a variety of compounds, including solid chromium trioxide. This kind of chromic acid may be used as a cleaning mixture for glass. Chromic acid may also refer to the molecular species, H2CrO4 of which the trioxide is the anhydride. Chromic acid features chromium in an oxidation state of +6 (or VI). It is a strong and corrosive oxidising agent.

<span class="mw-page-title-main">Hair coloring</span> Practice of changing the hair color

Hair coloring, or hair dyeing, is the practice of changing the hair color. The main reasons for this are cosmetic: to cover gray or white hair, to change to a color regarded as more fashionable or desirable, or to restore the original hair color after it has been discolored by hairdressing processes or sun bleaching.

<i>p</i>-Phenylenediamine Chemical compound

p-Phenylenediamine (PPD) is an organic compound with the formula C6H4(NH2)2. This derivative of aniline is a white solid, but samples can darken due to air oxidation. It is mainly used as a component of engineering polymers and composites like kevlar. It is also an ingredient in hair dyes and is occasionally used as a substitute for henna.

Sulfur dyes are the most commonly used dyes manufactured for cotton in terms of volume. They are inexpensive, generally have good wash-fastness, and are easy to apply. Sulfur dyes are predominantly black, brown, and dark blue. Red sulfur dyes are unknown, although a pink or lighter scarlet color is available.

<span class="mw-page-title-main">Anodizing</span> Metal treatment process

Anodizing is an electrolytic passivation process used to increase the thickness of the natural oxide layer on the surface of metal parts.

<span class="mw-page-title-main">Dyeing</span> Process of adding color to textile products like fibers, yarns, and fabrics

Dyeing is the application of dyes or pigments on textile materials such as fibers, yarns, and fabrics with the goal of achieving color with desired color fastness. Dyeing is normally done in a special solution containing dyes and particular chemical material. Dye molecules are fixed to the fiber by absorption, diffusion, or bonding with temperature and time being key controlling factors. The bond between dye molecule and fiber may be strong or weak, depending on the dye used. Dyeing and printing are different applications; in printing, color is applied to a localized area with desired patterns. In dyeing, it is applied to the entire textile.

<span class="mw-page-title-main">Piranha solution</span> Oxidizing acid mixture containing sulfuric acid and hydrogen peroxide

Piranha solution, also known as piranha etch, is a mixture of sulfuric acid and hydrogen peroxide, used to clean organic residues off substrates. Because the mixture is a strong oxidizing agent, it will decompose most organic matter, and it will also hydroxylate most surfaces, making them highly hydrophilic (water-compatible). This means the solution can also easily dissolve fabric and skin, potentially causing severe damage and chemical burns in case of inadvertent contact.

<span class="mw-page-title-main">Photodegradation</span>

Photodegradation is the alteration of materials by light. Commonly, the term is used loosely to refer to the combined action of sunlight and air, which cause oxidation and hydrolysis. Often photodegradation is intentionally avoided, since it destroys paintings and other artifacts. It is, however, partly responsible for remineralization of biomass and is used intentionally in some disinfection technologies. Photodegradation does not apply to how materials may be aged or degraded via infrared light or heat, but does include degradation in all of the ultraviolet light wavebands.

<span class="mw-page-title-main">Bleach</span> Chemical used to remove stains, whiten, or disinfect, often via oxidation

Bleach is the generic name for any chemical product that is used industrially or domestically to remove color (whitening) from a fabric or fiber or to clean or to remove stains in a process called bleaching. It often refers specifically, to a dilute solution of sodium hypochlorite, also called "liquid bleach".

Bleaching of wood pulp is the chemical processing of wood pulp to lighten its color and whiten the pulp. The primary product of wood pulp is paper, for which whiteness is an important characteristic. These processes and chemistry are also applicable to the bleaching of non-wood pulps, such as those made from bamboo or kenaf.

<span class="mw-page-title-main">Hair bleaching</span> Practice of lightening the natural hair color

Hair bleaching, is the practice of lightening the hair color mainly for cosmetic purposes using bleaching agents. Bleaching can be done alone, combined with a toner, or as a step for further hair coloring. The most common commercial bleaching agents in use are hydrogen peroxide and persulfate salts, but historically other agents such as sulfuric acid, wood ash, lye and hypochlorite bleach were used. Hair can also become bleached unintentionally, such as through sun exposure.

Wet process engineering is one of the major streams in textile engineering which refers to the engineering of textile chemical processes and associated applied science. The other three streams in textile engineering are yarn engineering, fabric engineering, and apparel engineering. The processes of this stream are involved or carried out in an aqueous stage. Hence, it is called a wet process which usually covers pre-treatment, dyeing, printing, and finishing.

References

  1. de Sanjose, Ph.D., Silvia (2008). "Hair Dye". Encyclopedia of Global Health. SAGE Publications, Inc.: 771–772. doi:10.4135/9781412963855. ISBN   9781412941860 . Retrieved 19 February 2013.
  2. "Archived copy" (PDF). Archived from the original (PDF) on 2013-03-02. Retrieved 2013-02-19.{{cite web}}: CS1 maint: archived copy as title (link)
  3. Marie, Anne. "Hair Color Chemistry: How Hair Coloring Works". Chemistry.about.com. Retrieved 2019-06-03.