Hardy field

Last updated

In mathematics, a Hardy field is a field consisting of germs of real-valued functions at infinity that are closed under differentiation. They are named after the English mathematician G. H. Hardy.

Contents

Definition

Initially at least, Hardy fields were defined in terms of germs of real functions at infinity. Specifically we consider a collection H of functions that are defined for all large real numbers, that is functions f that map (u,∞) to the real numbers R, for some real number u depending on f. Here and in the rest of the article we say a function has a property "eventually" if it has the property for all sufficiently large x, so for example we say a function f in H is eventually zero if there is some real number U such that f(x) = 0 for all x  U. We can form an equivalence relation on H by saying f is equivalent to g if and only if f  g is eventually zero. The equivalence classes of this relation are called germs at infinity.

If H forms a field under the usual addition and multiplication of functions then so will H modulo this equivalence relation under the induced addition and multiplication operations. Moreover, if every function in H is eventually differentiable and the derivative of any function in H is also in H then H modulo the above equivalence relation is called a Hardy field. [1]

Elements of a Hardy field are thus equivalence classes and should be denoted, say, [f] to denote the class of functions that are eventually equal to the representative function f. However, in practice the elements are normally just denoted by the representatives themselves, so instead of [f] one would just write f.

Examples

If F is a subfield of R then we can consider it as a Hardy field by considering the elements of F as constant functions, that is by considering the number α in F as the constant function fα that maps every x in R to α. This is a field since F is, and since the derivative of every function in this field is 0 which must be in F it is a Hardy field.

A less trivial example of a Hardy field is the field of rational functions on R, denoted R(x). This is the set of functions of the form P(x)/Q(x) where P and Q are polynomials with real coefficients. Since the polynomial Q can have only finitely many zeros by the fundamental theorem of algebra, such a rational function will be defined for all sufficiently large x, specifically for all x larger than the largest real root of Q. Adding and multiplying rational functions gives more rational functions, and the quotient rule shows that the derivative of rational function is again a rational function, so R(x) forms a Hardy field.

Another example is the field of functions that can be expressed using the standard arithmetic operations, exponents, and logarithms, and are well-defined on some interval of the form . [2] Such functions are sometimes called Hardy L-functions. Much bigger Hardy fields (that contain Hardy L-functions as a subfield) can be defined using transseries.

Properties

Every element of a Hardy field is eventually either strictly positive, strictly negative, or zero. This follows fairly immediately from the facts that the elements in a Hardy field are eventually differentiable and hence continuous and eventually either have a multiplicative inverse or are zero. This means periodic functions such as the sine and cosine functions cannot exist in Hardy fields.

This avoidance of periodic functions also means that every element in a Hardy field has a (possibly infinite) limit at infinity, so if f is an element of H, then

exists in R  {∞,+∞}. [3]

It also means we can place an ordering on H by saying f < g if g  f is eventually strictly positive. Note that this is not the same as stating that f < g if the limit of f is less than the limit of g. For example, if we consider the germs of the identity function f(x) = x and the exponential function g(x) = ex then since g(x)  f(x) > 0 for all x we have that g > f. But they both tend to infinity. In this sense the ordering tells us how quickly all the unbounded functions diverge to infinity. Even finite limits being equal is not enough: consider f(x) = 1/x and g(x) = 0.

In model theory

The modern theory of Hardy fields doesn't restrict to real functions but to those defined in certain structures expanding real closed fields. Indeed, if R is an o-minimal expansion of a field, then the set of unary definable functions in R that are defined for all sufficiently large elements forms a Hardy field denoted H(R). [4] The properties of Hardy fields in the real setting still hold in this more general setting.

Related Research Articles

<span class="mw-page-title-main">Field (mathematics)</span> Algebraic structure with addition, multiplication, and division

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics.

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type. The word homomorphism comes from the Ancient Greek language: ὁμός meaning "same" and μορφή meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German ähnlich meaning "similar" to ὁμός meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925).

<span class="mw-page-title-main">Field of fractions</span>

In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements.

<span class="mw-page-title-main">Sequence</span> Finite or infinite ordered list of elements

In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members. The number of elements is called the length of the sequence. Unlike a set, the same elements can appear multiple times at different positions in a sequence, and unlike a set, the order does matter. Formally, a sequence can be defined as a function from natural numbers to the elements at each position. The notion of a sequence can be generalized to an indexed family, defined as a function from an arbitrary index set.

In algebra, the kernel of a homomorphism is generally the inverse image of 0. An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix.

<span class="mw-page-title-main">Surreal number</span> Generalization of the real numbers

In mathematics, the surreal number system is a totally ordered proper class containing not only the real numbers but also infinite and infinitesimal numbers, respectively larger or smaller in absolute value than any positive real number. The surreals share many properties with the reals, including the usual arithmetic operations ; as such, they form an ordered field. If formulated in von Neumann–Bernays–Gödel set theory, the surreal numbers are a universal ordered field in the sense that all other ordered fields, such as the rationals, the reals, the rational functions, the Levi-Civita field, the superreal numbers can be realized as subfields of the surreals. The surreals also contain all transfinite ordinal numbers; the arithmetic on them is given by the natural operations. It has also been shown that the maximal class hyperreal field is isomorphic to the maximal class surreal field.

<span class="mw-page-title-main">Exponentiation</span> Mathematical operation

In mathematics, exponentiation is an operation involving two numbers, the base and the exponent or power. Exponentiation is written as bn, where b is the base and n is the power; this is pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.

<span class="mw-page-title-main">Quotient ring</span> Reduction of a ring by one of its ideals

In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. It is a specific example of a quotient, as viewed from the general setting of universal algebra. Starting with a ring R and a two-sided ideal I in R, a new ring, the quotient ring R / I, is constructed, whose elements are the cosets of I in R subject to special + and operations.

<span class="mw-page-title-main">Division by zero</span> Class of mathematical expression

In mathematics, division by zero is division where the divisor (denominator) is zero. Such a division can be formally expressed as , where a is the dividend (numerator). In ordinary arithmetic, the expression has no meaning, as there is no number that, when multiplied by 0, gives a ; thus, division by zero is undefined. Since any number multiplied by zero is zero, the expression is also undefined; when it is the form of a limit, it is an indeterminate form. Historically, one of the earliest recorded references to the mathematical impossibility of assigning a value to is contained in Anglo-Irish philosopher George Berkeley's criticism of infinitesimal calculus in 1734 in The Analyst.

<span class="mw-page-title-main">Homogeneous coordinates</span> Coordinate system used in projective geometry

In mathematics, homogeneous coordinates or projective coordinates, introduced by August Ferdinand Möbius in his 1827 work Der barycentrische Calcul, are a system of coordinates used in projective geometry, just as Cartesian coordinates are used in Euclidean geometry. They have the advantage that the coordinates of points, including points at infinity, can be represented using finite coordinates. Formulas involving homogeneous coordinates are often simpler and more symmetric than their Cartesian counterparts. Homogeneous coordinates have a range of applications, including computer graphics and 3D computer vision, where they allow affine transformations and, in general, projective transformations to be easily represented by a matrix.

<span class="mw-page-title-main">Algebraic curve</span> Curve defined as zeros of polynomials

In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.

In mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete ordered field exists, and the existence proof consists of constructing a mathematical structure that satisfies the definition.

In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set X into a vector space has a natural vector space structure given by pointwise addition and scalar multiplication. In other scenarios, the function space might inherit a topological or metric structure, hence the name function space.

In algebra, a valuation is a function on a field that provides a measure of the size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field.

In mathematics, the notion of a germ of an object in/on a topological space is an equivalence class of that object and others of the same kind that captures their shared local properties. In particular, the objects in question are mostly functions and subsets. In specific implementations of this idea, the functions or subsets in question will have some property, such as being analytic or smooth, but in general this is not needed ; it is however necessary that the space on/in which the object is defined is a topological space, in order that the word local has some meaning.

This page lists some examples of vector spaces. See vector space for the definitions of terms used on this page. See also: dimension, basis.

In algebra, an absolute value is a function which measures the "size" of elements in a field or integral domain. More precisely, if D is an integral domain, then an absolute value is any mapping |x| from D to the real numbers R satisfying:

<span class="mw-page-title-main">Real projective line</span>

In geometry, a real projective line is a projective line over the real numbers. It is an extension of the usual concept of a line that has been historically introduced to solve a problem set by visual perspective: two parallel lines do not intersect but seem to intersect "at infinity". For solving this problem, points at infinity have been introduced, in such a way that in a real projective plane, two distinct projective lines meet in exactly one point. The set of these points at infinity, the "horizon" of the visual perspective in the plane, is a real projective line. It is the set of directions emanating from an observer situated at any point, with opposite directions identified.

In mathematics, the field of logarithmic-exponential transseries is a non-Archimedean ordered differential field which extends comparability of asymptotic growth rates of elementary nontrigonometric functions to a much broader class of objects. Each log-exp transseries represents a formal asymptotic behavior, and it can be manipulated formally, and when it converges, corresponds to actual behavior. Transseries can also be convenient for representing functions. Through their inclusion of exponentiation and logarithms, transseries are a strong generalization of the power series at infinity and other similar asymptotic expansions.

References

  1. Boshernitzan, Michael (1986), "Hardy fields and existence of transexponential functions", Aequationes Mathematicae , 30 (1): 258–280, doi:10.1007/BF02189932, S2CID   121021048
  2. G. H. Hardy, Properties of Logarithmico-Exponential Functions, Proc. London Math. Soc. (2), 54–90, 10, 1911
  3. Rosenlicht, Maxwell (1983), "The Rank of a Hardy Field", Transactions of the American Mathematical Society, 280 (2): 659–671, doi: 10.2307/1999639 , JSTOR   1999639
  4. Kuhlmann, Franz-Viktor; Kuhlmann, Salma (2003), "Valuation theory of exponential Hardy fields I" (PDF), Mathematische Zeitschrift, 243 (4): 671–688, doi:10.1007/s00209-002-0460-4, S2CID   6679449