This article's factual accuracy is disputed .(October 2021) |
Harmonic balance is a method used to calculate the steady-state response of nonlinear differential equations, [1] and is mostly applied to nonlinear electrical circuits. [2] [3] [4] It is a frequency domain method for calculating the steady state, as opposed to the various time-domain steady-state methods. The name "harmonic balance" is descriptive of the method, which starts with Kirchhoff's Current Law written in the frequency domain and a chosen number of harmonics. A sinusoidal signal applied to a nonlinear component in a system will generate harmonics of the fundamental frequency. Effectively the method assumes a linear combination of sinusoids can represent the solution, then balances current and voltage sinusoids to satisfy Kirchhoff's law. The method is commonly used to simulate circuits which include nonlinear elements, [5] and is most applicable to systems with feedback in which limit cycles occur.
Microwave circuits were the original application for harmonic balance methods in electrical engineering. Microwave circuits were well-suited because, historically, microwave circuits consist of many linear components which can be directly represented in the frequency domain, plus a few nonlinear components. System sizes were typically small. For more general circuits, the method was considered impractical for all but these very small circuits until the mid-1990s, when Krylov subspace methods were applied to the problem. [6] [7] The application of preconditioned Krylov subspace methods allowed much larger systems to be solved, both in the size of the circuit and in the number of harmonics. This made practical the present-day use of harmonic balance methods to analyze radio-frequency integrated circuits (RFICs).
Consider the differential equation . We use the ansatz solution , and plugging in, we obtain
Then by matching the terms, we have , which yields approximate period .
For a more exact approximation, we use ansatz solution . Plugging these in and matching the , terms, we obtain after routine algebra:
The cubic equation for has only one real root . With that, we obtain an approximate period Thus we approach the exact solution .
The harmonic balance algorithm is a special version of Galerkin's method. It is used for the calculation of periodic solutions of autonomous and non-autonomous differential-algebraic systems of equations. The treatment of non-autonomous systems is slightly simpler than the treatment of autonomous ones. A non-autonomous DAE system has the representation
with a sufficiently smooth function where is the number of equations and are placeholders for time, the vector of unknowns, and the vector of time derivatives.
The system is non-autonomous if the function is not constant for (some) fixed and . Nevertheless, we require that there is a known excitation period such that is -periodic.
A natural candidate set for the -periodic solutions of the system equations is the Sobolev space of weakly differentiable functions on the interval with periodic boundary conditions . We assume that the smoothness and the structure of ensures that is square-integrable for all .
The system of harmonic functions is a Schauder basis of and forms a :Hilbert basis of the Hilbert space of square-integrable functions. Therefore, each solution candidate can be represented by a Fourier-series with Fourier-coefficients and the system equation is satisfied in the weak sense if for every base function the variational equation
is fulfilled. This variational equation represents an infinite sequence of scalar equations since it has to be tested for the infinite number of base functions in .
The Galerkin approach to the harmonic balance is to project the candidate set as well as the test space for the variational equation to the finitely dimensional sub-space spanned by the finite base .
This gives the finite-dimensional solution and the finite set of equations
which can be solved numerically.
In the special context of electronics, the algorithm starts with Kirchhoff's current law written in the frequency-domain. To increase the efficiency of the procedure, the circuit may be partitioned into its linear and nonlinear parts, since the linear part is readily described and calculated using nodal analysis directly in the frequency domain.
First, an initial guess is made for the solution, then an iterative process continues:
Convergence is reached when is acceptably small, at which point all voltages and currents of the steady-state solution are known, most often represented as Fourier coefficients.
In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium position, experiences a restoring force F proportional to the displacement x: where k is a positive constant.
The wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields such as mechanical waves or electromagnetic waves. It arises in fields like acoustics, electromagnetism, and fluid dynamics.
In physics and electrical engineering, a cutoff frequency, corner frequency, or break frequency is a boundary in a system's frequency response at which energy flowing through the system begins to be reduced rather than passing through.
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point, it is one of the most important model systems in quantum mechanics. Furthermore, it is one of the few quantum-mechanical systems for which an exact, analytical solution is known.
In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.
In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields. The table of spherical harmonics contains a list of common spherical harmonics.
Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.
In theoretical physics, the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a nonlinear variation of the Schrödinger equation. It is a classical field equation whose principal applications are to the propagation of light in nonlinear optical fibers and planar waveguides and to Bose–Einstein condensates confined to highly anisotropic, cigar-shaped traps, in the mean-field regime. Additionally, the equation appears in the studies of small-amplitude gravity waves on the surface of deep inviscid (zero-viscosity) water; the Langmuir waves in hot plasmas; the propagation of plane-diffracted wave beams in the focusing regions of the ionosphere; the propagation of Davydov's alpha-helix solitons, which are responsible for energy transport along molecular chains; and many others. More generally, the NLSE appears as one of universal equations that describe the evolution of slowly varying packets of quasi-monochromatic waves in weakly nonlinear media that have dispersion. Unlike the linear Schrödinger equation, the NLSE never describes the time evolution of a quantum state. The 1D NLSE is an example of an integrable model.
Nondimensionalization is the partial or full removal of physical dimensions from an equation involving physical quantities by a suitable substitution of variables. This technique can simplify and parameterize problems where measured units are involved. It is closely related to dimensional analysis. In some physical systems, the term scaling is used interchangeably with nondimensionalization, in order to suggest that certain quantities are better measured relative to some appropriate unit. These units refer to quantities intrinsic to the system, rather than units such as SI units. Nondimensionalization is not the same as converting extensive quantities in an equation to intensive quantities, since the latter procedure results in variables that still carry units.
In quantum mechanics, a two-state system is a quantum system that can exist in any quantum superposition of two independent quantum states. The Hilbert space describing such a system is two-dimensional. Therefore, a complete basis spanning the space will consist of two independent states. Any two-state system can also be seen as a qubit.
In physics, a ponderomotive force is a nonlinear force that a charged particle experiences in an inhomogeneous oscillating electromagnetic field. It causes the particle to move towards the area of the weaker field strength, rather than oscillating around an initial point as happens in a homogeneous field. This occurs because the particle sees a greater magnitude of force during the half of the oscillation period while it is in the area with the stronger field. The net force during its period in the weaker area in the second half of the oscillation does not offset the net force of the first half, and so over a complete cycle this makes the particle move towards the area of lesser force.
The Duffing equation, named after Georg Duffing (1861–1944), is a non-linear second-order differential equation used to model certain damped and driven oscillators. The equation is given by where the (unknown) function is the displacement at time t, is the first derivative of with respect to time, i.e. velocity, and is the second time-derivative of i.e. acceleration. The numbers and are given constants.
In numerical analysis, the split-step (Fourier) method is a pseudo-spectral numerical method used to solve nonlinear partial differential equations like the nonlinear Schrödinger equation. The name arises for two reasons. First, the method relies on computing the solution in small steps, and treating the linear and the nonlinear steps separately. Second, it is necessary to Fourier transform back and forth because the linear step is made in the frequency domain while the nonlinear step is made in the time domain.
The Mathieu equation is a linear second-order differential equation with periodic coefficients. The French mathematician, E. Léonard Mathieu, first introduced this family of differential equations, nowadays termed Mathieu equations, in his “Memoir on vibrations of an elliptic membrane” in 1868. "Mathieu functions are applicable to a wide variety of physical phenomena, e.g., diffraction, amplitude distortion, inverted pendulum, stability of a floating body, radio frequency quadrupole, and vibration in a medium with modulated density"
In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.
Vibration is a mechanical phenomenon whereby oscillations occur about an equilibrium point. Vibration may be deterministic if the oscillations can be characterised precisely, or random if the oscillations can only be analysed statistically.
The Gausson is a soliton which is the solution of the logarithmic Schrödinger equation, which describes a quantum particle in a possible nonlinear quantum mechanics. The logarithmic Schrödinger equation preserves the dimensional homogeneity of the equation, i.e. the product of the independent solutions in one dimension remain the solution in multiple dimensions. While the nonlinearity alone cannot cause the quantum entanglement between dimensions, the logarithmic Schrödinger equation can be solved by the separation of variables.
In quantum probability, the Belavkin equation, also known as Belavkin-Schrödinger equation, quantum filtering equation, stochastic master equation, is a quantum stochastic differential equation describing the dynamics of a quantum system undergoing observation in continuous time. It was derived and henceforth studied by Viacheslav Belavkin in 1988.
In fluid dynamics, Stokes problem also known as Stokes second problem or sometimes referred to as Stokes boundary layer or Oscillating boundary layer is a problem of determining the flow created by an oscillating solid surface, named after Sir George Stokes. This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.
Phase reduction is a method used to reduce a multi-dimensional dynamical equation describing a nonlinear limit cycle oscillator into a one-dimensional phase equation. Many phenomena in our world such as chemical reactions, electric circuits, mechanical vibrations, cardiac cells, and spiking neurons are examples of rhythmic phenomena, and can be considered as nonlinear limit cycle oscillators.
{{cite book}}
: CS1 maint: location missing publisher (link) CS1 maint: multiple names: authors list (link)