Hartmut Heinrich

Last updated

Hartmut Heinrich (born 5 March 1952 in Northeim, Lower Saxony) is a German marine geologist and climatologist. Heinrich was Head of the Marine Physics Department at the Federal Maritime and Hydrographic Agency (BSH) in Hamburg until September 2017. He was actively involved in global Argo Ocean Observing Programme, environmental research and administration, and adaptation to climate change. In 1988 he described the suddenly occurring climate changes in the history of the Earth, which have since been named after him, Heinrich events. [1] [2]

Since October 2017 he is freelancer (10°E maritime consulting) for climate and environment. In October 2017 the Free and Hanseatic City honoured his important contribution to climatic research with the title "Professor honoris causa".

Heinrich studied geology at the University of Göttingen and attained a doctorate at the University of Kiel in marine geology. The discovery that was named for him, Heinrich events, periods of substantial ice output of the continental ice sheets by which the global climate is strongly affected, were subsequently confirmed by investigations of ice core samples from the Greenland ice sheet by the Greenland ice core project (GRIP). Heinrich warns of the consequences of global warming that could occur precipitously and of far larger effects on navigation, coastal populations and the marine environment.

Selected publications

Related Research Articles

<span class="mw-page-title-main">Holocene</span> Current geological epoch, covering the last 11,700 years

The Holocene is the current geological epoch, beginning approximately 11,700 years ago. It follows the Last Glacial Period, which concluded with the Holocene glacial retreat. The Holocene and the preceding Pleistocene together form the Quaternary period. The Holocene is an interglacial period within the ongoing glacial cycles of the Quaternary, and is equivalent to Marine Isotope Stage 1.

<span class="mw-page-title-main">Ice age</span> Period of long-term reduction in temperature of Earths surface and atmosphere

An ice age is a long period of reduction in the temperature of Earth's surface and atmosphere, resulting in the presence or expansion of continental and polar ice sheets and alpine glaciers. Earth's climate alternates between ice ages, and greenhouse periods during which there are no glaciers on the planet. Earth is currently in the ice age called Quaternary glaciation. Individual pulses of cold climate within an ice age are termed glacial periods, and intermittent warm periods within an ice age are called interglacials or interstadials.

<span class="mw-page-title-main">Younger Dryas</span> Time period c. 12,900–11,700 years ago with Northern Hemisphere glacial cooling and SH warming

The Younger Dryas (YD) was a period in Earth's geologic history that occurred circa 12,900 to 11,700 years Before Present (BP). It is primarily known for the sudden or "abrupt" cooling in the Northern Hemisphere, when the North Atlantic Ocean cooled and annual air temperatures decreased by ~3 °C (5.4 °F) over North America, 2–6 °C (3.6–10.8 °F) in Europe and up to 10 °C (18 °F) in Greenland, in a few decades. Cooling in Greenland was particularly rapid, taking place over just 3 years or less. At the same time, the Southern Hemisphere experienced warming. This period ended as rapidly as it began, with dramatic warming over ~50 years, which transitioned the Earth from the glacial Pleistocene epoch into the current Holocene.

<span class="mw-page-title-main">Volcanic winter</span> Temperature anomaly event caused by a volcanic eruption

A volcanic winter is a reduction in global temperatures caused by droplets of sulfuric acid obscuring the Sun and raising Earth's albedo (increasing the reflection of solar radiation) after a large, sulfur-rich, particularly explosive volcanic eruption. Climate effects are primarily dependent upon the amount of injection of SO2 and H2S into the stratosphere where they react with OH and H2O to form H2SO4 on a timescale of a week, and the resulting H2SO4 aerosols produce the dominant radiative effect. Volcanic stratospheric aerosols cool the surface by reflecting solar radiation and warm the stratosphere by absorbing terrestrial radiation for several years. Moreover, the cooling trend can be further extended by atmosphere–ice–ocean feedback mechanisms. These feedbacks can continue to maintain the cool climate long after the volcanic aerosols have dissipated.

<span class="mw-page-title-main">Ice sheet</span> Large mass of glacial tulips

In glaciology, an ice sheet, also known as a continental glacier, is a mass of glacial ice that covers surrounding terrain and is greater than 50,000 km2 (19,000 sq mi). The only current ice sheets are the Antarctic ice sheet and the Greenland ice sheet. Ice sheets are bigger than ice shelves or alpine glaciers. Masses of ice covering less than 50,000 km2 are termed an ice cap. An ice cap will typically feed a series of glaciers around its periphery.

<span class="mw-page-title-main">Solutrean</span> Archaeological industry of the European Upper Paleolithic

The Solutrean industry is a relatively advanced flint tool-making style of the Upper Paleolithic of the Final Gravettian, from around 22,000 to 17,000 BP. Solutrean sites have been found in modern-day France, Spain and Portugal.

<span class="mw-page-title-main">Last Interglacial</span> Interglacial period which began 130,000 years ago

The Last Interglacial, also known as the Eemian, was the interglacial period which began about 130,000 years ago at the end of the Penultimate Glacial Period and ended about 115,000 years ago at the beginning of the Last Glacial Period. It corresponds to Marine Isotope Stage 5e. It was the second-to-latest interglacial period of the current Ice Age, the most recent being the Holocene which extends to the present day. During the Last Interglacial, the proportion of CO2 in the atmosphere was about 280 parts per million. The Last Interglacial was one of the warmest periods of the last 800,000 years, with temperatures comparable to and at times warmer than the contemporary Holocene interglacial, with the maximum sea level being up to 6 to 9 metres higher than at present, with global ice volume likely also being smaller than the Holocene interglacial.

<span class="mw-page-title-main">Dansgaard–Oeschger event</span> Rapid climate fluctuation in the last glacial period

Dansgaard–Oeschger events, named after palaeoclimatologists Willi Dansgaard and Hans Oeschger, are rapid climate fluctuations that occurred 25 times during the last glacial period. Some scientists say that the events occur quasi-periodically with a recurrence time being a multiple of 1,470 years, but this is debated. The comparable climate cyclicity during the Holocene is referred to as Bond events.

<span class="mw-page-title-main">Last Glacial Maximum</span> Circa 24,000–16,000 BCE; most recent era when ice sheets were at their greatest extent

The Last Glacial Maximum (LGM), also referred to as the Last Glacial Coldest Period, was the most recent time during the Last Glacial Period where ice sheets were at their greatest extent 26,000 and 20,000 years ago. Ice sheets covered much of Northern North America, Northern Europe, and Asia and profoundly affected Earth's climate by causing a major expansion of deserts, along with a large drop in sea levels.

<span class="mw-page-title-main">Heinrich event</span> Large groups of icebergs traverse the North Atlantic.

A Heinrich event is a natural phenomenon in which large groups of icebergs break off from the Laurentide ice sheet and traverse the Hudson Strait into the North Atlantic. First described by marine geologist Hartmut Heinrich, they occurred during five of the last seven glacial periods over the past 640,000 years. Heinrich events are particularly well documented for the last glacial period but notably absent from the penultimate glaciation. The icebergs contained rock mass that had been eroded by the glaciers, and as they melted, this material was dropped to the sea floor as ice rafted debris forming deposits called Heinrich layers.

<span class="mw-page-title-main">Abrupt climate change</span> Form of climate change

An abrupt climate change occurs when the climate system is forced to transition at a rate that is determined by the climate system energy-balance. The transition rate is more rapid than the rate of change of the external forcing, though it may include sudden forcing events such as meteorite impacts. Abrupt climate change therefore is a variation beyond the variability of a climate. Past events include the end of the Carboniferous Rainforest Collapse, Younger Dryas, Dansgaard–Oeschger events, Heinrich events and possibly also the Paleocene–Eocene Thermal Maximum. The term is also used within the context of climate change to describe sudden climate change that is detectable over the time-scale of a human lifetime. Such a sudden climate change can be the result of feedback loops within the climate system or tipping points in the climate system.

The Older Dryas was a stadial (cold) period between the Bølling and Allerød interstadials, about 14,000 years Before Present, towards the end of the Pleistocene. Its date range is not well defined, with estimates varying by 400 years, but its duration is agreed to have been around two centuries.

<span class="mw-page-title-main">Quaternary glaciation</span> Series of alternating glacial and interglacial periods

The Quaternary glaciation, also known as the Pleistocene glaciation, is an alternating series of glacial and interglacial periods during the Quaternary period that began 2.58 Ma and is ongoing. Although geologists describe this entire period up to the present as an "ice age", in popular culture this term usually refers to the most recent glacial period, or to the Pleistocene epoch in general. Since Earth still has polar ice sheets, geologists consider the Quaternary glaciation to be ongoing, though currently in an interglacial period.

<span class="mw-page-title-main">Marine Isotope Stage 11</span> Marine isotope stage between 424,000 and 374,000 years ago

Marine Isotope Stage 11 or MIS 11 is a Marine Isotope Stage in the geologic temperature record, covering the interglacial period between 424,000 and 374,000 years ago. It corresponds to the Hoxnian Stage in Britain.

<span class="mw-page-title-main">8.2-kiloyear event</span> Rapid global cooling around 8,200 years ago

In climatology, the 8.2-kiloyear event was a sudden decrease in global temperatures that occurred approximately 8,200 years before the present, or c. 6,200 BC, and which lasted for the next two to four centuries. It defines the start of the Northgrippian age in the Holocene epoch. The cooling was significantly less pronounced than during the Younger Dryas cold period that preceded the beginning of the Holocene. During the event, atmospheric methane concentration decreased by 80 ppb, an emission reduction of 15%, by cooling and drying at a hemispheric scale.

<span class="mw-page-title-main">Antarctic Cold Reversal</span> Episode in Earth climate history

The Antarctic Cold Reversal (ACR) was a climatic event of intense atmospheric and oceanic cooling across the southern hemisphere (>40°S) between 14,700 and 13,000 years before present (BP) that interrupted the most recent deglacial climate warming. This cooling event was initially well noted in Antarctic ice core records. Soon after, evidence from sediment cores and glacial advances from land masses and Oceanic sectors south of 40°S expanded the region of this climate cooling event. The ACR illustrates the complexity of the climate changes at the transition from the Pleistocene to the Holocene Epochs.

<span class="mw-page-title-main">Bond event</span> North Atlantic ice rafting events

Bond events are North Atlantic ice rafting events that are tentatively linked to climate fluctuations in the Holocene. Eight such events have been identified. Bond events were previously believed to exhibit a roughly c. 1,500-year cycle, but the primary period of variability is now put at c. 1,000 years.

<span class="mw-page-title-main">Magellanic moorland</span>

The Magellanic moorland or Magellanic tundra is an ecoregion on the Patagonian archipelagos south of latitude 48° S. It is characterized by high rainfall with a vegetation of scrubs, bogs and patches of forest in more protected areas. Cushion plants, grass-like plants and bryophytes are common.

<span class="mw-page-title-main">Medieval Warm Period</span> Time of warm climate in the North Atlantic region lasting from c. 950 to c. 1250

The Medieval Warm Period (MWP), also known as the Medieval Climate Optimum or the Medieval Climatic Anomaly, was a time of warm climate in the North Atlantic region that lasted from c. 950 to c. 1250. Climate proxy records show peak warmth occurred at different times for different regions, which indicate that the MWP was not a globally uniform event. Some refer to the MWP as the Medieval Climatic Anomaly to emphasize that climatic effects other than temperature were also important.

<span class="mw-page-title-main">Lake Estancia</span> Prehistoric lake in New Mexico, United States

Lake Estancia was a lake formed in the Estancia Valley, central New Mexico, which left various coastal landforms in the valley. The lake was mostly fed by creek and groundwater from the Manzano Mountains, and fluctuated between freshwater stages and saltier stages. The lake had a diverse fauna, including cutthroat trout; they may have reached it during a possible past stage where it was overflowing.

References

  1. Heinrich, H. (1988). "Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years". Quaternary Research . 29 (2): 142–152. Bibcode:1988QuRes..29..142H. doi:10.1016/0033-5894(88)90057-9. S2CID   129842509.
  2. Hodell, David A.; Channell, James E. T.; Curtis, Jason H.; Romero, Oscar E.; Röhl, Ursula (2008-12-01). "Onset of "Hudson Strait" Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (~640 ka)?". Paleoceanography and Paleoclimatology . 23 (4): PA4218. Bibcode:2008PalOc..23.4218H. CiteSeerX   10.1.1.475.7471 . doi:10.1029/2008PA001591. ISSN   1944-9186.