Harvey Cantor | |
---|---|
Alma mater | Columbia University NYU School of Medicine |
Known for | T cell subsets |
Scientific career | |
Fields | Immunology |
Institutions | Harvard Medical School Dana–Farber Cancer Institute |
Harvey Cantor is an American immunologist known for his studies of the development and immunological function of T lymphocytes. [1] [2] Cantor is currently the Baruj Benacerraf Professor of Immunology and Microbiology at the Harvard Medical School.
Cantor's early studies focused on the development and function of lymphocytes derived from the thymus (T-lymphocytes or T cells). [3] In particular, his research addressed whether the multiple immunological functions of T cells were invested in a single lineage or represented the specialized activities of distinct T cell subsets. This approach depended on the use of antibodies to cell surface glycoproteins or “markers” that might identify specialized subsets of lymphocytes with particular immunologic functions. This experimental approach was also used to investigate other lymphocyte populations, including “natural killer” cells. His laboratory continues to investigate the molecular and cellular elements that regulate the immune response and maintain self-tolerance in the context of autoimmune disorders, anti-tumor immunity and, more recently, Alzheimer's disease. [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]
Cantor received an A.B. from Columbia University and M.D. from New York University School of Medicine, followed by fellowship training at the National Institutes of Health (NIH) in Bethesda, MD with Richard Asofsky and as an NIH Special Fellow at the National Institute for Medical Research in Mill Hill, London. Following a residency in medicine at Stanford, he joined the faculty of Harvard Medical School in 1975 as an assistant professor of medicine and, since 1979, has been professor of pathology. In 1998, Cantor was appointed chair of the Department of Cancer Immunology & Virology at the Dana-Farber Cancer Institute and in 2007 he was honored by appointment to the Baruj Benacerraf Professorship at Harvard Medical School.
Cantor was elected to the National Academy of Sciences (2002), the American Association for the Advancement of Science (2005) and the American Academy of Arts & Sciences (2010). [14] More recently, Cantor received the 2019 Excellence in Mentoring Award [15] and was elected as a Distinguished Fellow of the American Association of Immunologists in 2020. [16]
The regulatory T cells (Tregs or Treg cells), formerly known as suppressor T cells, are a subpopulation of T cells that modulate the immune system, maintain tolerance to self-antigens, and prevent autoimmune disease. Treg cells are immunosuppressive and generally suppress or downregulate induction and proliferation of effector T cells. Treg cells express the biomarkers CD4, FOXP3, and CD25 and are thought to be derived from the same lineage as naïve CD4+ cells. Because effector T cells also express CD4 and CD25, Treg cells are very difficult to effectively discern from effector CD4+, making them difficult to study. Research has found that the cytokine transforming growth factor beta (TGF-β) is essential for Treg cells to differentiate from naïve CD4+ cells and is important in maintaining Treg cell homeostasis.
Baruj Benacerraf was a Venezuelan-American immunologist, who shared the 1980 Nobel Prize in Physiology or Medicine for the "discovery of the major histocompatibility complex genes which encode cell surface protein molecules important for the immune system's distinction between self and non-self." His colleagues and shared recipients were Jean Dausset and George Davis Snell.
FOXP3, also known as scurfin, is a protein involved in immune system responses. A member of the FOX protein family, FOXP3 appears to function as a master regulator of the regulatory pathway in the development and function of regulatory T cells. Regulatory T cells generally turn the immune response down. In cancer, an excess of regulatory T cell activity can prevent the immune system from destroying cancer cells. In autoimmune disease, a deficiency of regulatory T cell activity can allow other autoimmune cells to attack the body's own tissues.
Immune tolerance, or immunological tolerance, or immunotolerance, is a state of unresponsiveness of the immune system to substances or tissue that would otherwise have the capacity to elicit an immune response in a given organism. It is induced by prior exposure to that specific antigen and contrasts with conventional immune-mediated elimination of foreign antigens. Tolerance is classified into central tolerance or peripheral tolerance depending on where the state is originally induced—in the thymus and bone marrow (central) or in other tissues and lymph nodes (peripheral). The mechanisms by which these forms of tolerance are established are distinct, but the resulting effect is similar.
In immunology, an immunological synapse is the interface between an antigen-presenting cell or target cell and a lymphocyte such as a T/B cell or Natural Killer cell. The interface was originally named after the neuronal synapse, with which it shares the main structural pattern. An immunological synapse consists of molecules involved in T cell activation, which compose typical patterns—activation clusters. Immunological synapses are the subject of much ongoing research.
Cluster of Differentiation 86 is a protein constitutively expressed on dendritic cells, Langerhans cells, macrophages, B-cells, and on other antigen-presenting cells. Along with CD80, CD86 provides costimulatory signals necessary for T cell activation and survival. Depending on the ligand bound, CD86 can signal for self-regulation and cell-cell association, or for attenuation of regulation and cell-cell disassociation.
CD69 is a human transmembrane C-Type lectin protein encoded by the CD69 gene. It is an early activation marker that is expressed in hematopoietic stem cells, T cells, and many other cell types in the immune system. It is also implicated in T cell differentiation as well as lymphocyte retention in lymphoid organs.
Zinc finger protein Helios is a protein that in humans is encoded by the IKZF2 gene. This protein is a member of Ikaros family of transcription factors.
Harald von Boehmer was a German-Swiss immunologist best known for his work on T cells.
Christopher Edward Rudd, is a Canadian-born immunologist-biochemist. He is currently Professor of Medicine at the Universite de Montreal and Director, Immunology-Oncology at the Centre de Recherche Hôpital Maisonneuve-Rosemont (CR-HMR).
Timothy "Tim" A. Springer, Ph.D. is an immunologist and Latham Family Professor at Harvard Medical School. Springer is best known for his pioneering work in discovering the first integrins and intercellular adhesion molecules (ICAMs) and elucidating how these cell adhesion molecules function in the immune system. His innovative use of monoclonal antibodies in his research paved the way for the development of therapeutic antibodies, known as selective adhesion molecule inhibitors, to treat autoimmune diseases. In recent years, Springer's research interest has expanded to include malaria, transforming growth factor beta (TGF-β) signaling molecules, and von Willebrand factor.
Avery August is a Belizean-born American scientist who is currently a professor of immunology and vice provost at Cornell University.
Lloyd John Old was one of the founders and standard-bearers of the field of cancer immunology. When Old began his career in 1958, tumor immunology was in its infancy. Today, cancer immunotherapies are emerging as a significant advance in cancer therapy.
T helper 3 cells (Th3) are a subset of T lymphocytes with immunoregulary and immunosuppressive functions, that can be induced by administration of foreign oral antigen. Th3 cells act mainly through the secretion of anti-inflammatory cytokine transforming growth factor beta (TGF-β). Th3 have been described both in mice and human as CD4+FOXP3− regulatory T cells. Th3 cells were first described in research focusing on oral tolerance in the experimental autoimmune encephalitis (EAE) mouse model and later described as CD4+CD25−FOXP3−LAP+ cells, that can be induced in the gut by oral antigen through T cell receptor (TCR) signalling.
The immune network theory is a theory of how the adaptive immune system works, that has been developed since 1974 mainly by Niels Jerne and Geoffrey W. Hoffmann. The theory states that the immune system is an interacting network of lymphocytes and molecules that have variable (V) regions. These V regions bind not only to things that are foreign to the vertebrate, but also to other V regions within the system. The immune system is therefore seen as a network, with the components connected to each other by V-V interactions.
Daniel Michael Davis is Head of Life Sciences and Professor of Immunology at Imperial College London. Davis was previously Professor of Immunology at the University of Manchester. He is the author of The Secret Body, The Beautiful Cure and The Compatibility Gene. His research, using microscopy to study immune cell biology has helped understand how immune cells interact with each other. He co-discovered the immunological synapse and membrane nanotubes.
Hans-Georg Rammensee is a German immunologist and cancer researcher. He has been Chair Professor and Head of the Department of Immunology at the University of Tübingen since 1996. Rammensee has contributed essentially to the research fields of MHC biology and tumor immunology and to the development of cancer immunotherapies.
Yang Liu is a Chinese-American immunologist. He serves as director of the Division of Immunotherapy, Institute of Human Virology, University of Maryland Baltimore.
Bjarne Bogen is a Norwegian immunologist, inventor and physician. He is widely known for his research on DNA vaccines, autoimmune disorders and cancer immunology.
Thomas A. Waldmann was an American immunologist who has worked on therapeutic monoclonal antibodies to the IL-2 receptor, Interleukin 15 (IL-15), and Adult T-cell Leukemia (ATL). Until the week he died, he was an active distinguished investigator at the Lymphoid Malignancies Branch of the National Cancer Institute.
{{cite web}}
: CS1 maint: url-status (link){{cite web}}
: CS1 maint: url-status (link)