Heat of dilution

Last updated

In thermochemistry, the heat of dilution, or enthalpy of dilution, refers to the enthalpy change associated with the dilution process of a component in a solution at a constant pressure. If the initial state of the component is a pure liquid (presuming the solution is liquid), the dilution process is equal to its dissolution process and the heat of dilution is the same as the heat of solution. Generally, the heat of dilution is normalized by the amount of the solution and its dimensional units are energy per unit mass or amount of substance, commonly expressed in the unit of kJ/mol (or J/mol).

Contents

Definition

The heat of dilution can be defined from two perspectives: the differential heat and the integral heat.

The differential heat of dilution is viewed on a micro scale, which is associated with the process in which a small amount of solvent is added to a large quantity of solution. The molar differential heat of dilution is thus defined as the enthalpy change caused by adding a mole of solvent at a constant temperature and pressure to a very large amount of solution. Because of the small amount of addition, the concentration of dilute solution remains practically unchanged. Mathematically, the molar differential heat of dilution is denoted as: [1]

where ∂∆ni is the infinitesimal change or differential of mole number of the dilution.

The integral heat of dilution, however, is viewed on a macro scale. With respect to the integral heat, consider a process in which a certain amount of solution diluted from an initial concentration to a final concentration. The enthalpy change in this process, normalized by the mole number of solute, is evaluated as the molar integral heat of dilution. Mathematically, the molar integral heat of dilution is denoted as:

If the infinite amount of solvent is added to a solution with a known concentration of solute, the corresponding change of enthalpy is called as integral heat of dilution to infinite dilution. [2]

The dilution between two concentrations of the solute is associated to an intermediary heat of dilution by mole of solute.

Dilution and Dissolution

The process of dissolution and the process of dilution are closely related to each other. In both processes, similar final statuses of solutions are reached. However, the initial statuses can be different. In a dissolution process, a solute is changed from a pure phase—solid, liquid, or gas—to a solution phase. If the pure phase of the solute is a solid or gas (presuming the solvent itself is liquid), the process can be seen in two stages: the phase change into a liquid, and the mixing of liquids. The dissolution process is generally expressed as:

The notation "sln" stands for "solution", which represents a status of the solvent or solute being part of the solution.

In a dilution process, on the other hand, the solution is changed from one concentration to another, illustrated as:

Consider an extreme condition for the dilution process. Let the initial status be the pure liquid. The dilution process is then described as:

It is worth noting that this expression is just the second stage of the dissolution process. In other words, if both the solute to be dissolved and the initial "solution" to be diluted are liquids, the dissolution and the dilution processes are identical.

Steps in dilution

Viewed from a microscopic perspective, the dissolution and dilution processes involve three steps of molecular interaction: the breaking of attraction between solute molecules (lattice energy), the breaking of attraction between solvent molecules, and the forming of attraction between a solute and a solvent molecule. If the solution is ideal, which means the solute and the solvent are identical in an interaction, then all the kinds of attraction mentioned above have the same value. As a result, the enthalpy change caused by breaking and forming attraction is canceled, and the dilution of an ideal solution causes no enthalpy change. [3]

However, if the solute and solvent cannot be treated identically when considered in terms of molecular attraction, which makes the solution non-ideal, the net change of enthalpy is nonzero. In other words, the heat of dilution results from the non-ideality of the solution.

Examples for acids

The integral heats of dilution to infinite dilution of some acids in aqueous solutions are shown in the following table. [2]

in kJ/mol at 25 °C
mDil. ratio HF HCl HClO4 HBr HI HNO3 CH2O2 C2H4O4
55.5061.045.6148.8319.730.0462.167
5.55061013.665.841-0.4904.5903.5771.5400.2851.477
0.555110013.221.2340.0500.9830.7360.5020.1840.423
0.0555100012.420.4270.2590.3850.3510.3180.1210.272
0.00555100008.9120.1420.1260.1300.1210.1300.1050.243
0.0005551000003.7660.0420.0420.0380.0380.0460.0540.209
000000000

Related Research Articles

<span class="mw-page-title-main">Enthalpy</span> Measure of energy in a thermodynamic system

Enthalpy, a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant pressure, which is conveniently provided by the large ambient atmosphere. The pressure–volume term expresses the work required to establish the system's physical dimensions, i.e. to make room for it by displacing its surroundings. The pressure-volume term is very small for solids and liquids at common conditions, and fairly small for gases. Therefore, enthalpy is a stand-in for energy in chemical systems; bond, lattice, solvation and other "energies" in chemistry are actually enthalpy differences. As a state function, enthalpy depends only on the final configuration of internal energy, pressure, and volume, not on the path taken to achieve it.

<span class="mw-page-title-main">Enthalpy of vaporization</span> Energy to convert a liquid substance to a gas; a function of pressure

The enthalpy of vaporization, also known as the (latent) heat of vaporization or heat of evaporation, is the amount of energy (enthalpy) that must be added to a liquid substance to transform a quantity of that substance into a gas. The enthalpy of vaporization is a function of the pressure at which that transformation takes place.

<span class="mw-page-title-main">Calorimeter</span> Instrument for measuring heat

A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity. Differential scanning calorimeters, isothermal micro calorimeters, titration calorimeters and accelerated rate calorimeters are among the most common types. A simple calorimeter just consists of a thermometer attached to a metal container full of water suspended above a combustion chamber. It is one of the measurement devices used in the study of thermodynamics, chemistry, and biochemistry.

In chemistry and thermodynamics, the standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements in their reference state, with all substances in their standard states. The standard pressure value p = 105 Pa(= 100 kPa = 1 bar) is recommended by IUPAC, although prior to 1982 the value 1.00 atm (101.325 kPa) was used. There is no standard temperature. Its symbol is ΔfH. The superscript Plimsoll on this symbol indicates that the process has occurred under standard conditions at the specified temperature (usually 25 °C or 298.15 K). Standard states are as follows:

<span class="mw-page-title-main">Solubility</span> Capacity of a substance to dissolve in a solvent in a homogeneous way

In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.

Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reaction with another constituent of the solution, such as acid or alkali. Each solubility equilibrium is characterized by a temperature-dependent solubility product which functions like an equilibrium constant. Solubility equilibria are important in pharmaceutical, environmental and many other scenarios.

In chemistry, the standard molar entropy is the entropy content of one mole of pure substance at a standard state of pressure and any temperature of interest. These are often chosen to be the standard temperature and pressure.

In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulated by the English chemist William Henry, who studied the topic in the early 19th century.

Molar concentration is a measure of the concentration of a chemical species, in particular of a solute in a solution, in terms of amount of substance per unit volume of solution. In chemistry, the most commonly used unit for molarity is the number of moles per liter, having the unit symbol mol/L or mol/dm3 in SI unit. A solution with a concentration of 1 mol/L is said to be 1 molar, commonly designated as 1 M.

The standard enthalpy of reaction for a chemical reaction is the difference between total reactant and total product molar enthalpies, calculated for substances in their standard states. This can in turn be used to predict the total chemical bond energy liberated or bound during reaction, as long as the enthalpy of mixing is also accounted for.

In chemistry, colligative properties are those properties of solutions that depend on the ratio of the number of solute particles to the number of solvent particles in a solution, and not on the nature of the chemical species present. The number ratio can be related to the various units for concentration of a solution such as molarity, molality, normality (chemistry), etc. The assumption that solution properties are independent of nature of solute particles is exact only for ideal solutions, which are solutions that exhibit thermodynamic properties analogous to those of an ideal gas, and is approximate for dilute real solutions. In other words, colligative properties are a set of solution properties that can be reasonably approximated by the assumption that the solution is ideal.

<span class="mw-page-title-main">Freezing-point depression</span> Process in which adding a solute to a solvent decreases the freezing point of the solvent

Freezing-point depression is a drop in the minimum temperature at which a substance freezes, caused when a smaller amount of another, non-volatile substance is added. Examples include adding salt into water, alcohol in water, ethylene or propylene glycol in water, adding copper to molten silver, or the mixing of two solids such as impurities into a finely powdered drug.

In thermochemistry, the enthalpy of solution is the enthalpy change associated with the dissolution of a substance in a solvent at constant pressure resulting in infinite dilution.

In chemistry, an ideal solution or ideal mixture is a solution that exhibits thermodynamic properties analogous to those of a mixture of ideal gases. The enthalpy of mixing is zero as is the volume change on mixing by definition; the closer to zero the enthalpy of mixing is, the more "ideal" the behavior of the solution becomes. The vapor pressures of the solvent and solute obey Raoult's law and Henry's law, respectively, and the activity coefficient is equal to one for each component.

<span class="mw-page-title-main">Flory–Huggins solution theory</span> Lattice model of polymer solutions

Flory–Huggins solution theory is a lattice model of the thermodynamics of polymer solutions which takes account of the great dissimilarity in molecular sizes in adapting the usual expression for the entropy of mixing. The result is an equation for the Gibbs free energy change for mixing a polymer with a solvent. Although it makes simplifying assumptions, it generates useful results for interpreting experiments.

<span class="mw-page-title-main">Dilution (equation)</span> Chemistry concept

Dilution is the process of decreasing the concentration of a solute in a solution, usually simply by mixing with more solvent like adding more water to the solution. To dilute a solution means to add more solvent without the addition of more solute. The resulting solution is thoroughly mixed so as to ensure that all parts of the solution are identical.

In thermodynamics, the enthalpy of mixing is the enthalpy liberated or absorbed from a substance upon mixing. When a substance or compound is combined with any other substance or compound, the enthalpy of mixing is the consequence of the new interactions between the two substances or compounds. This enthalpy, if released exothermically, can in an extreme case cause an explosion.

In thermodynamics, an apparent molar property of a solution component in a mixture or solution is a quantity defined with the purpose of isolating the contribution of each component to the non-ideality of the mixture. It shows the change in the corresponding solution property per mole of that component added, when all of that component is added to the solution. It is described as apparent because it appears to represent the molar property of that component in solution, provided that the properties of the other solution components are assumed to remain constant during the addition. However this assumption is often not justified, since the values of apparent molar properties of a component may be quite different from its molar properties in the pure state.

<span class="mw-page-title-main">Enthalpy of fusion</span> Enthalpy change when a substance melts

In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.

In chemistry, the mass concentrationρi is defined as the mass of a constituent mi divided by the volume of the mixture V.

References

  1. H. DeVoe, "Reactions of other chemical processes," in Thermodynamics and Chemistry, 2nd ed. London, UK: Pearson Education, 2001, pp. 303-366.
  2. 1 2 V. B. Parker, "Heats of dilution," in Thermal Properties of Aqueous Uni-Univalent Electrolytes, Washington DC: U.S. Government Printing Office, 1965, pp. 10-19.
  3. P. Atkins and J. D. Paula, "Simple mixtures," in Physical Chemistry, 8th ed. New York: W.H. Freeman and Company, 2006, pp. 137-173.