Heat transfer enhancement is the process of increasing the effectiveness of heat exchangers. This can be achieved when the heat transfer power of a given device is increased or when the pressure losses generated by the device are reduced. A variety of techniques can be applied to this effect, including generating strong secondary flows or increasing boundary layer turbulence.
During the earliest attempts to enhance heat transfer, plain (or smooth) surfaces were used. This surface requires a special surface geometry able to provide higher Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle {hA} } values per unit surface area in comparison with a plain surface. The ratio of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle {hA} } of an enhanced heat transfer surface to the plain surface is called Enhancement Ratio " ". Thus,
The heat transfer rate for a two-fluid counterflow heat exchanger is given by
In order to better illustrate the benefits of enhancement, the total length 'L' of the tube is multiplied and divided in the equation
Where is the overall thermal resistance per unit tube length. And it is given by
The subscripts 1 and 2, describe the two different fluids. The surface efficiency is represented by employing extended surfaces. One aspect to take into consideration is that the latter equation does not include any fouling resistances due to its simplicity, which can be important. In order to enhance the performance of the heat exchanger, the term, must be increased. For achieving a reduced thermal resistance, the enhanced surface geometry may be used to increase one or both terms in relation to the plain surfaces, leading to a reduced thermal resistance per unit tube length, . This reduced term may be used to achieve one of the following three objectives:
1. Size reduction. maintaining the heat exchange rate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle {Q} } constant, the length of the heat exchanger may be reduced, providing a heat exchanger of smaller proportions.
2. Increased .
3. Reduced pumping power for fixed heat duty. This will require smaller velocities of operation than the plain surface and a normally not desired, increased frontal area.
Depending on the objectives for the design, any of the three different performance improvements can be used on an enhanced surface, and using any of the three mentioned performance improvements it is fully possible to accomplish it. [1]
There are several available options for enhancing heat transfer. The enhancement can be achieved by increasing the surface area for convection or/and increasing the convection coefficient. For example, the surface roughness can be used to increase Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle {h} } in order to enhance turbulence. This can be achieved through machining or other kinds of insertions like coil-spring wire. The insert provides a helical roughness in contact with the surface. The convection coefficient may also be increased by an insert of a twisted tape that consists in a periodical twist through 360 degrees. Tangential inserts optimize the velocity of the flow near the tube wall, while providing a bigger heat transfer area. While, increased area and convection coefficient can be achieved by applying spiral fin or ribs inserts. Other aspects such pressure drop must be taken into consideration in order to meet the fan or pump power constraints.
The coil spring insert may enhance heat transfer without turbulence or additional heat transfer surface area. A secondary flow is induces the fluid creating two longitudinal vortices. This could result, (in contrast to a right tube) in highly non-uniform local around the periphery of the tube. Leading to a dependence of the local heat transfer coefficients on the different locations along the tube (). Supposing that the conditions for the heat flux are constant, the mean fluid temperature, can be estimated as follows,
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle {q''_s} } = constant.
Maximum fluid temperatures near the tube wall are present when the fluid is heated, and because the heat transfer coefficient is strongly depended of angle (), the calculation of the maximum local temperature is not straight forward. For this purpose, correlations for the peripherally averaged Nusselt number are, if none, of little use when keeping heat flux conditions constant. On the other hand, correlations for the peripherally averaged Nusselt number for constant wall temperature are very useful. [2]
The secondary flow:
The coil pitch S has negligible influence on the pressure drop and the heat transfer rates. For the helical tube, the critical Reynolds number to the onset of turbulence is,
where is given by in turbulent and fully developed state.
The delays on the transition from laminar to turbulent state are strongly dependent on strong secondary flows associated with tightly wound helically coiled tubes. The friction factor for fully developed laminar flow with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle {C/D \ge 3}} is,
where . C is the outer diameter of the helical coil.
and
for
and
where
For cases where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle {C/D\le 3}}, there is available recommendations provided by Shah and Joshi. [2] The heat transfer coefficient may be used in the equation for the Newton's law of cooling equation
and can be evaluated from the correlation,
where and
The correlations for the friction factor in turbulent state are based in limited data. Increased heat transfer due to the secondary flow is not significant in turbulent state constituting less than 10% for . Furthermore, augmentation created by the use of helically coiled tubes due to the secondary flow is usually employed only for situations where the flow is in the laminar state. In this state, the entrance length is 20% to 50% shorter in comparison with the straight tube. In the case of turbulent flow, the flow becomes fully developed during the first half-turn of the helically coiled tube. For this reason, the entrance region can be neglected in many engineering calculations. If the liquid or gas is heated in a straight tube, the fluid that passes near the centerline, will exit the tube in a much shorter time and will always be cooler than the fluid passing near the wall. [3]
In fluid dynamics, laminar flow is characterized by fluid particles following smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another like playing cards. There are no cross-currents perpendicular to the direction of flow, nor eddies or swirls of fluids. In laminar flow, the motion of the particles of the fluid is very orderly with particles close to a solid surface moving in straight lines parallel to that surface. Laminar flow is a flow regime characterized by high momentum diffusion and low momentum convection.
In thermal fluid dynamics, the Nusselt number is the ratio of convective to conductive heat transfer at a boundary in a fluid. Convection includes both advection and diffusion (conduction). The conductive component is measured under the same conditions as the convective but for a hypothetically motionless fluid. It is a dimensionless number, closely related to the fluid's Rayleigh number.
In fluid mechanics, the Grashof number is a dimensionless number which approximates the ratio of the buoyancy to viscous forces acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number.
In the study of heat transfer, Newton's law of cooling is a physical law which states that
The rate of heat loss of a body is directly proportional to the difference in the temperatures between the body and its environment.
A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct contact. They are widely used in space heating, refrigeration, air conditioning, power stations, chemical plants, petrochemical plants, petroleum refineries, natural-gas processing, and sewage treatment. The classic example of a heat exchanger is found in an internal combustion engine in which a circulating fluid known as engine coolant flows through radiator coils and air flows past the coils, which cools the coolant and heats the incoming air. Another example is the heat sink, which is a passive heat exchanger that transfers the heat generated by an electronic or a mechanical device to a fluid medium, often air or a liquid coolant.
In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers.
In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area.
In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach. Currently, there is no formula more accurate or universally applicable than the Darcy-Weisbach supplemented by the Moody diagram or Colebrook equation.
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition. The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.
Parasitic drag, also known as profile drag, is a type of aerodynamic drag that acts on any object when the object is moving through a fluid. Parasitic drag is a combination of form drag and skin friction drag. It affects all objects regardless of whether they are capable of generating lift.
In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat. It is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient has SI units in watts per square meter per kelvin (W/m2/K).
The Stanton number, St, is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). It is used to characterize heat transfer in forced convection flows.
The number of transfer units (NTU) method is used to calculate the rate of heat transfer in heat exchangers when there is insufficient information to calculate the log mean temperature difference (LMTD). In heat exchanger analysis, if the fluid inlet and outlet temperatures are specified or can be determined by simple energy balance, the LMTD method can be used; but when these temperatures are not available either the NTU or the effectiveness NTU method is used.
In fluid thermodynamics, nucleate boiling is a type of boiling that takes place when the surface temperature is hotter than the saturated fluid temperature by a certain amount but where the heat flux is below the critical heat flux. For water, as shown in the graph below, nucleate boiling occurs when the surface temperature is higher than the saturation temperature by between 10 and 30 °C. The critical heat flux is the peak on the curve between nucleate boiling and transition boiling. The heat transfer from surface to liquid is greater than that in film boiling.
Concentric Tube Heat Exchangers are used in a variety of industries for purposes such as material processing, food preparation, and air-conditioning. They create a temperature driving force by passing fluid streams of different temperatures parallel to each other, separated by a physical boundary in the form of a pipe. This induces forced convection, transferring heat to/from the product.
In fluid mechanics, the Reynolds number is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between inertial and viscous forces. At low Reynolds numbers, flows tend to be dominated by laminar (sheet-like) flow, while at high Reynolds numbers, flows tend to be turbulent. The turbulence results from differences in the fluid's speed and direction, which may sometimes intersect or even move counter to the overall direction of the flow. These eddy currents begin to churn the flow, using up energy in the process, which for liquids increases the chances of cavitation.
In engineering, physics, and chemistry, the study of transport phenomena concerns the exchange of mass, energy, charge, momentum and angular momentum between observed and studied systems. While it draws from fields as diverse as continuum mechanics and thermodynamics, it places a heavy emphasis on the commonalities between the topics covered. Mass, momentum, and heat transport all share a very similar mathematical framework, and the parallels between them are exploited in the study of transport phenomena to draw deep mathematical connections that often provide very useful tools in the analysis of one field that are directly derived from the others.
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer. When the boundary layer expands to fill the entire pipe, the developing flow becomes a fully developed flow, where flow characteristics no longer change with increased distance along the pipe. Many different entrance lengths exist to describe a variety of flow conditions. Hydrodynamic entrance length describes the formation of a velocity profile caused by viscous forces propagating from the pipe wall. Thermal entrance length describes the formation of a temperature profile. Awareness of entrance length may be necessary for the effective placement of instrumentation, such as fluid flow meters.
Skin friction drag is a type of aerodynamic or hydrodynamic drag, which is resistant force exerted on an object moving in a fluid. Skin friction drag is caused by the viscosity of fluids and is developed from laminar drag to turbulent drag as a fluid moves on the surface of an object. Skin friction drag is generally expressed in terms of the Reynolds number, which is the ratio between inertial force and viscous force.
The removal of heat from nuclear reactors is an essential step in the generation of energy from nuclear reactions. In nuclear engineering there are a number of empirical or semi-empirical relations used for quantifying the process of removing heat from a nuclear reactor core so that the reactor operates in the projected temperature interval that depends on the materials used in the construction of the reactor. The effectiveness of removal of heat from the reactor core depends on many factors, including the cooling agents used and the type of reactor. Common liquid coolants for nuclear reactors include: deionized water, heavy water, the lighter alkaline metals, lead or lead-based eutectic alloys like lead-bismuth, and NaK, a eutectic alloy of sodium and potassium. Gas cooled reactors operate with coolants like carbon dioxide, helium or nitrogen but some very low powered research reactors have even been air-cooled with Chicago Pile 1 relying on natural convection of the surrounding air to remove the negligible thermal power output. There is ongoing research into using supercritical fluids as reactor coolants but thus far neither the supercritical water reactor nor a reactor cooled with supercritical Carbon Dioxide nor any other kind of supercritical-fluid-cooled reactor has ever been built.
{{cite book}}
: CS1 maint: multiple names: authors list (link){{cite book}}
: CS1 maint: multiple names: authors list (link)