In thermal engineering, Heisler charts are a graphical analysis tool for the evaluation of heat transfer in transient, one-dimensional conduction. [1] They are a set of two charts per included geometry introduced in 1947 by M. P. Heisler [2] which were supplemented by a third chart per geometry in 1961 by H. Gröber. Heisler charts permit evaluation of the central temperature for transient heat conduction through an infinitely long plane wall of thickness 2L, an infinitely long cylinder of radius ro, and a sphere of radius ro. Each aforementioned geometry can be analyzed by three charts which show the midplane temperature, temperature distribution, and heat transfer. [1]
Although Heisler–Gröber charts are a faster and simpler alternative to the exact solutions of these problems, there are some limitations. First, the body must be at uniform temperature initially. Second, the Fourier's number of the analyzed object should be bigger than 0.2. Additionally, the temperature of the surroundings and the convective heat transfer coefficient must remain constant and uniform. Also, there must be no heat generation from the body itself. [1] [3] [4]
These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall:
where Ti is the initial uniform temperature of the slab, T∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity. The position x = 0 represents the center of the slab.
The first chart for the plane wall is plotted using three different variables. Plotted along the vertical axis of the chart is dimensionless temperature at the midplane, Plotted along the horizontal axis is the Fourier number, Fo = αt/L2. The curves within the graph are a selection of values for the inverse of the Biot number, where Bi = hL/k. k is the thermal conductivity of the material and h is the heat transfer coefficient. [1]
The second chart is used to determine the variation of temperature within the plane wall at other location in the x-direction at the same time of for different Biot numbers. [1] The vertical axis is the ratio of a given temperature to that at the centerline where the x/L curve is the position at which T is taken. The horizontal axis is the value of Bi−1.
The third chart in each set was supplemented by Gröber in 1961 and this particular one shows the dimensionless heat transferred from the wall as a function of a dimensionless time variable. The vertical axis is a plot of Q/Qo, the ratio of actual heat transfer to the amount of total possible heat transfer before T = T∞. On the horizontal axis is the plot of (Bi2)(Fo), a dimensionless time variable.
For the infinitely long cylinder, the Heisler chart is based on the first term in an exact solution to a Bessel function. [1]
Each chart plots similar curves to the previous examples, and on each axis is plotted a similar variable.
The Heisler chart for a sphere is based on the first term in the exact Fourier series solution:
These charts can be used similar to the first two sets and are plots of similar variables.
In engineering, a transfer function of a system, sub-system, or component is a mathematical function that models the system's output for each possible input. It is widely used in electronic engineering tools like circuit simulators and control systems. In simple cases, this function can be represented as a two-dimensional graph of an independent scalar input versus the dependent scalar output. Transfer functions for components are used to design and analyze systems assembled from components, particularly using the block diagram technique, in electronics and control theory.
In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.
In thermal fluid dynamics, the Nusselt number is the ratio of total heat transfer to conductive heat transfer at a boundary in a fluid. Total heat transfer combines conduction and convection. Convection includes both advection and diffusion (conduction). The conductive component is measured under the same conditions as the convective but for a hypothetically motionless fluid. It is a dimensionless number, closely related to the fluid's Rayleigh number.
Conduction is the process by which heat is transferred from the hotter end to the colder end of an object. The ability of the object to conduct heat is known as its thermal conductivity, and is denoted k.
In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.
The Biot number (Bi) is a dimensionless quantity used in heat transfer calculations, named for the eighteenth-century French physicist Jean-Baptiste Biot (1774–1862). The Biot number is the ratio of the thermal resistance for conduction inside a body to the resistance for convection at the surface of the body. This ratio indicates whether the temperature inside a body varies significantly in space when the body is heated or cooled over time by a heat flux at its surface.
In probability theory and statistics, the Weibull distribution is a continuous probability distribution. It models a broad range of random variables, largely in the nature of a time to failure or time between events. Examples are maximum one-day rainfalls and the time a user spends on a web page.
In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation; it is a simple corollary that the opposite is true of concave transformations.
The lumped-element model is a simplified representation of a physical system or circuit that assumes all components are concentrated at a single point and their behavior can be described by idealized mathematical models. The lumped-element model simplifies the system or circuit behavior description into a topology. It is useful in electrical systems, mechanical multibody systems, heat transfer, acoustics, etc. This is in contrast to distributed parameter systems or models in which the behaviour is distributed spatially and cannot be considered as localized into discrete entities.
Fourier optics is the study of classical optics using Fourier transforms (FTs), in which the waveform being considered is regarded as made up of a combination, or superposition, of plane waves. It has some parallels to the Huygens–Fresnel principle, in which the wavefront is regarded as being made up of a combination of spherical wavefronts whose sum is the wavefront being studied. A key difference is that Fourier optics considers the plane waves to be natural modes of the propagation medium, as opposed to Huygens–Fresnel, where the spherical waves originate in the physical medium.
The Laplace–Stieltjes transform, named for Pierre-Simon Laplace and Thomas Joannes Stieltjes, is an integral transform similar to the Laplace transform. For real-valued functions, it is the Laplace transform of a Stieltjes measure, however it is often defined for functions with values in a Banach space. It is useful in a number of areas of mathematics, including functional analysis, and certain areas of theoretical and applied probability.
The Knudsen number (Kn) is a dimensionless number defined as the ratio of the molecular mean free path length to a representative physical length scale. This length scale could be, for example, the radius of a body in a fluid. The number is named after Danish physicist Martin Knudsen (1871–1949).
In optics, the Airy disk and Airy pattern are descriptions of the best-focused spot of light that a perfect lens with a circular aperture can make, limited by the diffraction of light. The Airy disk is of importance in physics, optics, and astronomy.
In heat transfer, Kirchhoff's law of thermal radiation refers to wavelength-specific radiative emission and absorption by a material body in thermodynamic equilibrium, including radiative exchange equilibrium. It is a special case of Onsager reciprocal relations as a consequence of the time reversibility of microscopic dynamics, also known as microscopic reversibility.
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when plane waves are incident on a diffracting object, and the diffraction pattern is viewed at a sufficiently long distance from the object, and also when it is viewed at the focal plane of an imaging lens. In contrast, the diffraction pattern created near the diffracting object and is given by the Fresnel diffraction equation.
In the study of heat conduction, the Fourier number, is the ratio of time, , to a characteristic time scale for heat diffusion, . This dimensionless group is named in honor of J.B.J. Fourier, who formulated the modern understanding of heat conduction. The time scale for diffusion characterizes the time needed for heat to diffuse over a distance, . For a medium with thermal diffusivity, , this time scale is , so that the Fourier number is . The Fourier number is often denoted as or .
In thermodynamics, a material's thermal effusivity, also known as thermal responsivity, is a measure of its ability to exchange thermal energy with its surroundings. It is defined as the square root of the product of the material's thermal conductivity and its volumetric heat capacity or as the ratio of thermal conductivity to the square root of thermal diffusivity.
In optics, the Fraunhofer diffraction equation is used to model the diffraction of waves when the diffraction pattern is viewed at a long distance from the diffracting object, and also when it is viewed at the focal plane of an imaging lens.
The Fokas method, or unified transform, is an algorithmic procedure for analysing boundary value problems for linear partial differential equations and for an important class of nonlinear PDEs belonging to the so-called integrable systems. It is named after Greek mathematician Athanassios S. Fokas.
In heat transfer, moving heat sources is an engineering problems, particularly in welding. In the early 20th century, welding engineers began studying moving heat sources in thin plates, both empirically and theoretically. Depending on welding parameters, plate geometry and material properties, the solution takes three different forms: semi-infinite, intermediate, or thin plate. The temperature distribution and cooling rates can be determined from theoretical solutions to the problem, allowing engineers to better understand the consequences of heat sources on weldability and end item performance.