Helical engine

Last updated

The Helical engine is a proposed spacecraft propulsion drive that, like other reactionless drives, would violate the laws of physics. [1] [2] [3]

The concept was proposed by David M. Burns, formerly a NASA engineer at the Marshall Space Flight Center in Alabama, in a non-peer-reviewed report published on a NASA server in 2019 describing it as "A new concept for in-space propulsion is proposed in which propellant is not ejected from the engine, but instead is captured to create a nearly infinite specific impulse". [4]

The Helical engine accelerates ions that are confined in a locked loop. Once they are accelerated, the system changes the velocity of the ions in order to change their momentum. Afterward, Burns hypothesized that the engine, by moving the ions along its axis, could produce thrust. The proposed engine is mainly intended to be used to maintain the orbit of satellite stations during long periods of time without the need of refueling. [5] [6]

See also

Related Research Articles

<span class="mw-page-title-main">Interstellar travel</span> Hypothetical travel between stars or planetary systems

Interstellar travel is the hypothetical travel of spacecraft between star systems. Due to the vast distances between the Solar System and nearby stars, interstellar travel is not practicable with current propulsion technologies.

<span class="mw-page-title-main">Spacecraft propulsion</span> Method used to accelerate spacecraft

Spacecraft propulsion is any method used to accelerate spacecraft and artificial satellites. In-space propulsion exclusively deals with propulsion systems used in the vacuum of space and should not be confused with space launch or atmospheric entry.

<span class="mw-page-title-main">Hall-effect thruster</span> Type of electric propulsion system

In spacecraft propulsion, a Hall-effect thruster (HET) is a type of ion thruster in which the propellant is accelerated by an electric field. Hall-effect thrusters are sometimes referred to as Hall thrusters or Hall-current thrusters. Hall-effect thrusters use a magnetic field to limit the electrons' axial motion and then use them to ionize propellant, efficiently accelerate the ions to produce thrust, and neutralize the ions in the plume. The Hall-effect thruster is classed as a moderate specific impulse space propulsion technology and has benefited from considerable theoretical and experimental research since the 1960s.

<span class="mw-page-title-main">Ion thruster</span> Spacecraft engine that generates thrust by generating a jet of ions

An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. An ion thruster creates a cloud of positive ions from a neutral gas by ionizing it to extract some electrons from its atoms. The ions are then accelerated using electricity to create thrust. Ion thrusters are categorized as either electrostatic or electromagnetic.

<span class="mw-page-title-main">Nuclear thermal rocket</span> Nuclear spacecraft propulsion technology

A nuclear thermal rocket (NTR) is a type of thermal rocket where the heat from a nuclear reaction replaces the chemical energy of the propellants in a chemical rocket. In an NTR, a working fluid, usually liquid hydrogen, is heated to a high temperature in a nuclear reactor and then expands through a rocket nozzle to create thrust. The external nuclear heat source theoretically allows a higher effective exhaust velocity and is expected to double or triple payload capacity compared to chemical propellants that store energy internally.

<span class="mw-page-title-main">Mass driver</span> Proposed spacelaunch method

A mass driver or electromagnetic catapult is a proposed method of non-rocket spacelaunch which would use a linear motor to accelerate and catapult payloads up to high speeds. Existing and proposed mass drivers use coils of wire energized by electricity to make electromagnets, though a rotary mass driver has also been proposed. Sequential firing of a row of electromagnets accelerates the payload along a path. After leaving the path, the payload continues to move due to momentum.

Beam-powered propulsion, also known as directed energy propulsion, is a class of aircraft or spacecraft propulsion that uses energy beamed to the spacecraft from a remote power plant to provide energy. The beam is typically either a microwave or a laser beam, and it is either pulsed or continuous. A continuous beam lends itself to thermal rockets, photonic thrusters, and light sails. In contrast, a pulsed beam lends itself to ablative thrusters and pulse detonation engines.

<span class="mw-page-title-main">Nuclear pulse propulsion</span> Hypothetical spacecraft propulsion through continuous nuclear explosions for thrust

Nuclear pulse propulsion or external pulsed plasma propulsion is a hypothetical method of spacecraft propulsion that uses nuclear explosions for thrust. It originated as Project Orion with support from DARPA, after a suggestion by Stanislaw Ulam in 1947. Newer designs using inertial confinement fusion have been the baseline for most later designs, including Project Daedalus and Project Longshot.

<span class="mw-page-title-main">Magnetohydrodynamic drive</span> Vehicle propulsion using electromagnetic fields

A magnetohydrodynamic drive or MHD accelerator is a method for propelling vehicles using only electric and magnetic fields with no moving parts, accelerating an electrically conductive propellant with magnetohydrodynamics. The fluid is directed to the rear and as a reaction, the vehicle accelerates forward.

<span class="mw-page-title-main">Laser propulsion</span> Form of beam-powered propulsion

Laser propulsion is a form of beam-powered propulsion where the energy source is a remote laser system and separate from the reaction mass. This form of propulsion differs from a conventional chemical rocket where both energy and reaction mass come from the solid or liquid propellants carried on board the vehicle.

An ion-propelled aircraft or ionocraft is an aircraft that uses electrohydrodynamics (EHD) to provide lift or thrust in the air without requiring combustion or moving parts. Current designs do not produce sufficient thrust for crewed flight or useful loads.

A reactionless drive is a hypothetical device producing motion without the exhaust of a propellant. A propellantless drive is not necessarily reactionless when it constitutes an open system interacting with external fields; but a reactionless drive is a particular case of a propellantless drive that is a closed system, presumably in contradiction with the law of conservation of momentum. Reactionless drives are often considered similar to a perpetual motion machine. The name comes from Newton's third law, often expressed as: "For every action, there is an equal and opposite reaction."

<span class="mw-page-title-main">Spacecraft electric propulsion</span> Type of space propulsion using electrostatic and electromagnetic fields for acceleration

Spacecraft electric propulsion is a type of spacecraft propulsion technique that uses electrostatic or electromagnetic fields to accelerate mass to high speed and thus generating thrust to modify the velocity of a spacecraft in orbit. The propulsion system is controlled by power electronics.

<span class="mw-page-title-main">EmDrive</span> Device claimed to be a propellantless spacecraft thruster

The EmDrive is a concept for a thruster for spacecraft, first written about in 2001. It is purported to generate thrust by reflecting microwaves inside the device, in a way that would violate the law of conservation of momentum and other laws of physics. The concept has at times been referred to as a resonant cavity thruster.

Field propulsion is the concept of spacecraft propulsion where no propellant is necessary but instead momentum of the spacecraft is changed by an interaction of the spacecraft with external force fields, such as gravitational and magnetic fields from stars and planets. Proposed drives that use field propulsion are often called a reactionless or propellantless drive.

<span class="mw-page-title-main">Fastrac (rocket engine)</span> Pump-fed liquid rocket engine developed by NASA for use on small inexpensive, expendable rockets

Fastrac was a turbo pump-fed, liquid rocket engine. The engine was designed by NASA as part of the low cost X-34 Reusable Launch Vehicle (RLV) and as part of the Low Cost Booster Technology project. This engine was later known as the MC-1 engine when it was merged into the X-34 project.

<span class="mw-page-title-main">Harold G. White</span> NASA engineer and physicist (born 1965)

Harold G. "Sonny" White is a mechanical engineer, aerospace engineer, and applied physicist who is known for proposing new Alcubierre drive concepts and promoting advanced propulsion projects.

<span class="mw-page-title-main">Asteroid Redirect Mission</span> 2013–2017 proposed NASA space mission

The Asteroid Redirect Mission (ARM), also known as the Asteroid Retrieval and Utilization (ARU) mission and the Asteroid Initiative, was a space mission proposed by NASA in 2013; the mission was later cancelled. The Asteroid Retrieval Robotic Mission (ARRM) spacecraft would rendezvous with a large near-Earth asteroid and use robotic arms with anchoring grippers to retrieve a 4-meter boulder from the asteroid.

William Julius D. ("Bill") Escher was an aerospace engineer involved in the early development of the United States rocket programs and long time aerospace industry visionary. He was an internationally recognized expert in the field of high-speed airbreathing propulsion and hypersonic flight. He was a long been a proponent of combined-cycle propulsion systems for space access and his visionary 'Synerjet' concept is industry recognized. He wrote over a hundred technical papers on this subject and others such as hydrogen energy and lunar exploration.

<span class="mw-page-title-main">Salvatore Pais</span> Romanian-American physicist, aerospace engineer, and inventor

Salvatore Cezar Pais is a Romanian-American aerospace engineer and inventor, currently working for the United States Space Force. He formerly worked at the Naval Air Station Patuxent River. His patent applications for the US Navy attracted attention for their potential energy-producing applications, but also doubt about their feasibility, and speculation that they may be scams, pseudoscience, or disinformation intended to mislead the United States' adversaries.

References

  1. Siegel, Ethan. "For The Last Time, No, A NASA Engineer Has Not Broken Physics With An Impossible Engine". Forbes. Retrieved 2020-12-05.
  2. Cartwright, Jon. "NASA engineer's 'helical engine' may violate the laws of physics". New Scientist. Retrieved 2020-12-05.
  3. Koberlein, Brian (2019-10-16). "NASA Engineer Has A Great Idea for a High-Speed Spacedrive. Too Bad it Violates the Laws of Physics". Universe Today. Retrieved 2020-12-05.
  4. "NASA Technical Reports Server (NTRS)" (PDF). ntrs.nasa.gov. 19 August 2019. Retrieved 2020-12-05.
  5. Burns, David M. (2019-08-16), "Helical Engine", AIAA Propulsion and Energy 2019 Forum, AIAA Propulsion and Energy Forum, American Institute of Aeronautics and Astronautics, doi:10.2514/6.2019-4395, ISBN   978-1-62410-590-6, S2CID   242520152 , retrieved 2021-03-01
  6. Leman, Jennifer (2019-10-11). "A NASA Engineer Wants to Use a Particle Accelerator to Power Rockets". Popular Mechanics. Retrieved 2021-03-02.