Helicase-dependent amplification

Last updated

Helicase-dependent amplification (HDA) is a method for in vitro DNA amplification (like the polymerase chain reaction) that takes place at a constant temperature.

Contents

Introduction

The polymerase chain reaction is the most widely used method for in vitro DNA amplification for purposes of molecular biology and biomedical research. [1] This process involves the separation of the double-stranded DNA in high heat into single strands (the denaturation step, typically achieved at 95–97 °C), annealing of the primers to the single stranded DNA (the annealing step) and copying the single strands to create new double-stranded DNA (the extension step that requires the DNA polymerase) requires the reaction to be done in a thermal cycler. These bench-top machines are large, expensive and costly to run and maintain, limiting the potential applications of DNA amplification in situations outside the laboratory (e.g., in the identification of potentially hazardous micro-organisms at the scene of investigation, or at the point of care of a patient). Although PCR is usually associated with thermal cycling, the original patent by Mullis et al. [2] disclosed the use of a helicase as a means for denaturation of double stranded DNA thereby including isothermal nucleic acid amplification. In vivo, DNA is replicated by DNA polymerases with various accessory proteins, including a DNA helicase that acts to separate the DNA by unwinding the DNA double helix. [3] HDA was developed from this concept, using a helicase (an enzyme) to denature the DNA.

Methodology

Strands of double stranded DNA are first separated by a DNA helicase and coated by single stranded DNA (ssDNA)-binding proteins. In the second step, two sequence specific primers hybridise to each border of the DNA template. DNA polymerases are then used to extend the primers annealed to the templates to produce a double stranded DNA and the two newly synthesized DNA products are then used as substrates by DNA helicases, entering the next round of the reaction. Thus, a simultaneous chain reaction develops, resulting in exponential amplification of the selected target sequence (see Vincent et al.., 2004 [4] for a schematic diagram).

Present progress and the advantages and disadvantages of HDA

Since the publication of its discovery, HDA technology is being used for a "simple, easy to adapt nucleic acid test for the detection of Clostridium difficile". [5] Other applications include the rapid detection of Staphylococcus aureus by the amplification and detection of a short DNA sequence specific to the bacterium. [6] The advantages of HDA is that it provides a rapid method of nucleic acid amplification of a specific target at an isothermic temperature that does not require a thermal cycler. However, the optimisation of primers and sometimes buffers is required beforehand by the researcher. Normally primer and buffer optimisation is tested and achieved through PCR, raising the question of the need to spend extra on a separate system to do the actual amplification. Despite the selling point that HDA negates the use of a thermal cycler and therefore allows research to be conducted in the field, much of the work required to detect potentially hazardous microorganisms is carried out in a research/hospital lab setting regardless. At present, mass diagnoses from a great number of samples cannot yet be achieved by HDA, whereas PCR reactions carried out in thermal cycler that can hold multi-well sample plates allows for the amplification and detection of the intended DNA target from a maximum of 96 samples. The cost of purchasing reagents for HDA are also relatively expensive to that of PCR reagents, more so since it comes as a ready-made kit.

Related Research Articles

<span class="mw-page-title-main">Polymerase chain reaction</span> Laboratory technique to multiply a DNA sample for study

The polymerase chain reaction (PCR) is a method widely used to rapidly make millions to billions of copies of a specific DNA sample, allowing scientists to take a very small sample of DNA and amplify it to a large enough amount to study in detail. PCR was invented in 1983 by the American biochemist Kary Mullis at Cetus Corporation; Mullis and biochemist Michael Smith, who had developed other essential ways of manipulating DNA, were jointly awarded the Nobel Prize in Chemistry in 1993.

<span class="mw-page-title-main">Primer (molecular biology)</span> Short strand of RNA or DNA that serves as a starting point for DNA synthesis

A primer is a short single-stranded nucleic acid used by all living organisms in the initiation of DNA synthesis. DNA polymerase enzymes are only capable of adding nucleotides to the 3’-end of an existing nucleic acid, requiring a primer be bound to the template before DNA polymerase can begin a complementary strand. DNA polymerase adds nucleotides after binding to the RNA primer and synthesizes the whole strand. Later, the RNA strands must be removed accurately and replace them with DNA nucleotides forming a gap region known as a nick that is filled in using an enzyme called ligase. The removal process of the RNA primer requires several enzymes, such as Fen1, Lig1, and others that work in coordination with DNA polymerase, to ensure the removal of the RNA nucleotides and the addition of DNA nucleotides. Living organisms use solely RNA primers, while laboratory techniques in biochemistry and molecular biology that require in vitro DNA synthesis usually use DNA primers, since they are more temperature stable. Primers can be designed in laboratory for specific reactions such as polymerase chain reaction (PCR). When designing PCR primers, there are specific measures that must be taken into consideration, like the melting temperature of the primers and the annealing temperature of the reaction itself. Moreover, the DNA binding sequence of the primer in vitro has to be specifically chosen, which is done using a method called basic local alignment search tool (BLAST) that scans the DNA and finds specific and unique regions for the primer to bind. 

<span class="mw-page-title-main">Reverse transcription polymerase chain reaction</span> Laboratory technique to multiply an RNA sample for study

Reverse transcription polymerase chain reaction (RT-PCR) is a laboratory technique combining reverse transcription of RNA into DNA and amplification of specific DNA targets using polymerase chain reaction (PCR). It is primarily used to measure the amount of a specific RNA. This is achieved by monitoring the amplification reaction using fluorescence, a technique called real-time PCR or quantitative PCR (qPCR). Combined RT-PCR and qPCR are routinely used for analysis of gene expression and quantification of viral RNA in research and clinical settings.

<span class="mw-page-title-main">Real-time polymerase chain reaction</span> Laboratory technique of molecular biology

A real-time polymerase chain reaction is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR). It monitors the amplification of a targeted DNA molecule during the PCR, not at its end, as in conventional PCR. Real-time PCR can be used quantitatively and semi-quantitatively.

<span class="mw-page-title-main">Rolling circle replication</span>

Rolling circle replication (RCR) is a process of unidirectional nucleic acid replication that can rapidly synthesize multiple copies of circular molecules of DNA or RNA, such as plasmids, the genomes of bacteriophages, and the circular RNA genome of viroids. Some eukaryotic viruses also replicate their DNA or RNA via the rolling circle mechanism.

The overlap extension polymerase chain reaction is a variant of PCR. It is also referred to as Splicing by overlap extension / Splicing by overhang extension (SOE) PCR. It is used to insert specific mutations at specific points in a sequence or to splice smaller DNA fragments into a larger polynucleotide.

TaqMan probes are hydrolysis probes that are designed to increase the specificity of quantitative PCR. The method was first reported in 1991 by researcher Kary Mullis at Cetus Corporation, and the technology was subsequently developed by Hoffmann-La Roche for diagnostic assays and by Applied Biosystems for research applications.

Nucleic acid sequence-based amplification, commonly referred to as NASBA, is a method in molecular biology which is used to produce multiple copies of single stranded RNA. NASBA is a two-step process that takes RNA and anneals specially designed primers, then utilizes an enzyme cocktail to amplify it.

The polymerase chain reaction (PCR) is a commonly used molecular biology tool for amplifying DNA, and various techniques for PCR optimization which have been developed by molecular biologists to improve PCR performance and minimize failure.

Polymerase cycling assembly is a method for the assembly of large DNA oligonucleotides from shorter fragments. The process uses the same technology as PCR, but takes advantage of DNA hybridization and annealing as well as DNA polymerase to amplify a complete sequence of DNA in a precise order based on the single stranded oligonucleotides used in the process. It thus allows for the production of synthetic genes and even entire synthetic genomes.

Loop-mediated isothermal amplification (LAMP) is a single-tube technique for the amplification of DNA and a low-cost alternative to detect certain diseases. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) combines LAMP with a reverse transcription step to allow the detection of RNA.

<span class="mw-page-title-main">Nucleic acid test</span> Group of techniques to detect a particular nucleic acid sequence

A nucleic acid test (NAT) is a technique used to detect a particular nucleic acid sequence and thus usually to detect and identify a particular species or subspecies of organism, often a virus or bacterium that acts as a pathogen in blood, tissue, urine, etc. NATs differ from other tests in that they detect genetic materials rather than antigens or antibodies. Detection of genetic materials allows an early diagnosis of a disease because the detection of antigens and/or antibodies requires time for them to start appearing in the bloodstream. Since the amount of a certain genetic material is usually very small, many NATs include a step that amplifies the genetic material—that is, makes many copies of it. Such NATs are called nucleic acid amplification tests (NAATs). There are several ways of amplification, including polymerase chain reaction (PCR), strand displacement assay (SDA), or transcription mediated assay (TMA).

The versatility of polymerase chain reaction (PCR) has led to a large number of variants of PCR.

The ligase chain reaction (LCR) is a method of DNA amplification. The ligase chain reaction (LCR) is an amplification process that differs from PCR in that it involves a thermostable ligase to join two probes or other molecules together which can then be amplified by standard polymerase chain reaction (PCR) cycling. Each cycle results in a doubling of the target nucleic acid molecule. A key advantage of LCR is greater specificity as compared to PCR. Thus, LCR requires two completely different enzymes to operate properly: ligase, to join probe molecules together, and a thermostable polymerase to amplify those molecules involved in successful ligation. The probes involved in the ligation are designed such that the 5′ end of one probe is directly adjacent to the 3′ end of the other probe, thereby providing the requisite 3′-OH and 5′-PO4 group substrates for the ligase.

Nicking Enzyme Amplification Reaction (NEAR) is a method for in vitro DNA amplification like the polymerase chain reaction (PCR). NEAR is isothermal, replicating DNA at a constant temperature using a polymerase to exponentially amplify the DNA at a temperature range of 55 °C to 59 °C.

A primer dimer (PD) is a potential by-product in the polymerase chain reaction (PCR), a common biotechnological method. As its name implies, a PD consists of two primer molecules that have attached (hybridized) to each other because of strings of complementary bases in the primers. As a result, the DNA polymerase amplifies the PD, leading to competition for PCR reagents, thus potentially inhibiting amplification of the DNA sequence targeted for PCR amplification. In quantitative PCR, PDs may interfere with accurate quantification.

COLD-PCR is a modified polymerase chain reaction (PCR) protocol that enriches variant alleles from a mixture of wildtype and mutation-containing DNA. The ability to preferentially amplify and identify minority alleles and low-level somatic DNA mutations in the presence of excess wildtype alleles is useful for the detection of mutations. Detection of mutations is important in the case of early cancer detection from tissue biopsies and body fluids such as blood plasma or serum, assessment of residual disease after surgery or chemotherapy, disease staging and molecular profiling for prognosis or tailoring therapy to individual patients, and monitoring of therapy outcome and cancer remission or relapse. Common PCR will amplify both the major (wildtype) and minor (mutant) alleles with the same efficiency, occluding the ability to easily detect the presence of low-level mutations. The capacity to detect a mutation in a mixture of variant/wildtype DNA is valuable because this mixture of variant DNAs can occur when provided with a heterogeneous sample – as is often the case with cancer biopsies. Currently, traditional PCR is used in tandem with a number of different downstream assays for genotyping or the detection of somatic mutations. These can include the use of amplified DNA for RFLP analysis, MALDI-TOF genotyping, or direct sequencing for detection of mutations by Sanger sequencing or pyrosequencing. Replacing traditional PCR with COLD-PCR for these downstream assays will increase the reliability in detecting mutations from mixed samples, including tumors and body fluids.

Hot start PCR is a modified form of conventional polymerase chain reaction (PCR) that reduces the presence of undesired products and primer dimers due to non-specific DNA amplification at room temperatures. Many variations and modifications of the PCR procedure have been developed in order to achieve higher yields; hot start PCR is one of them. Hot start PCR follows the same principles as the conventional PCR - in that it uses DNA polymerase to synthesise DNA from a single stranded template. However, it utilizes additional heating and separation methods, such as inactivating or inhibiting the binding of Taq polymerase and late addition of Taq polymerase, to increase product yield as well as provide a higher specificity and sensitivity. Non-specific binding and priming or formation of primer dimers are minimized by completing the reaction mix after denaturation. Some ways to complete reaction mixes at high temperatures involve modifications that block DNA polymerase activity in low temperatures, use of modified deoxyribonucleotide triphosphates (dNTPs), and the physical addition of one of the essential reagents after denaturation.

Recombinase polymerase amplification (RPA) is a single tube, isothermal alternative to the polymerase chain reaction (PCR). By adding a reverse transcriptase enzyme to an RPA reaction it can detect RNA as well as DNA, without the need for a separate step to produce cDNA,. Because it is isothermal, RPA can use much simpler equipment than PCR, which requires a thermal cycler. Operating best at temperatures of 37–42 °C and still working, albeit more slowly, at room temperature means RPA reactions can in theory be run quickly simply by holding a tube. This makes RPA an excellent candidate for developing low-cost, rapid, point-of-care molecular tests. An international quality assessment of molecular detection of Rift Valley fever virus performed as well as the best RT-PCR tests, detecting less concentrated samples missed by some PCR tests and an RT-LAMP test. RPA was developed and launched by TwistDx Ltd., a biotechnology company based in Cambridge, UK.

<span class="mw-page-title-main">Reverse Transcription Loop-mediated Isothermal Amplification</span>

Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a one step nucleic acid amplification method to multiply specific sequences of RNA. It is used to diagnose infectious disease caused by RNA viruses.

References

  1. Saiki RK, et al. (1988). "Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase". Science. 239 (4839): 487–491. doi:10.1126/science.239.4839.487. PMID   2448875.
  2. US 4683195
  3. Kornberg A, Baker T (1992). DNA Replication, 2nd edn. WH Freeman and Company: New York. ISBN   978-1-891389-44-3.
  4. Vincent M, Xu Y, Kong H (2004). "Helicase-dependent isothermal DNA amplification". EMBO Rep. 5 (8): 795–800. doi:10.1038/sj.embor.7400200. PMC   1249482 . PMID   15247927.
  5. Chow WH, McCloskey C, Tong Y, Hu L, You Q, Kelly CP, Kong H, Tang YW, Tang W (2008). "Application of isothermal helicase-dependent amplification with a disposable detection device in a simple sensitive stool test for toxigenic Clostridium difficile". J Mol Diagn. 10 (5): 452–8. doi:10.2353/jmoldx.2008.080008. PMC   2518740 . PMID   18669881.
  6. "IsoAmp Rapid Staph Detection Kit (product description)". Biohelix corp. Archived from the original on 2009-10-10.