Helmholtz minimum dissipation theorem

Last updated

In fluid mechanics, Helmholtz minimum dissipation theorem (named after Hermann von Helmholtz who published it in 1868 [1] [2] ) states that the steady Stokes flow motion of an incompressible fluid has the smallest rate of dissipation than any other incompressible motion with the same velocity on the boundary. [3] [4] The theorem also has been studied by Diederik Korteweg in 1883 [5] and by Lord Rayleigh in 1913. [6]

Contents

This theorem is, in fact, true for any fluid motion where the nonlinear term of the incompressible Navier-Stokes equations can be neglected or equivalently when , where is the vorticity vector. For example, the theorem also applies to unidirectional flows such as Couette flow and Hagen–Poiseuille flow, where nonlinear terms disappear automatically.

Mathematical proof

Let and be the velocity, pressure and strain rate tensor of the Stokes flow and and be the velocity, pressure and strain rate tensor of any other incompressible motion with on the boundary. Let and be the representation of velocity and strain tensor in index notation, where the index runs from one to three.

Consider the following integral,

where in the above integral, only symmetrical part of the deformation tensor remains, because the contraction of symmetrical and antisymmetrical tensor is identically zero. Integration by parts gives

The first integral is zero because velocity at the boundaries of the two fields are equal. Now, for the second integral, since satisfies the Stokes flow equation, i.e., , we can write

Again doing an Integration by parts gives

The first integral is zero because velocities are equal and the second integral is zero because the flow in incompressible, i.e., . Therefore we have the identity which says,


The total rate of viscous dissipation energy over the whole volume of the field is given by

and after a rearrangement using above identity, we get

If is the total rate of viscous dissipation energy over the whole volume of the field , then we have

.

The second integral is non-negative and zero only if , thus proving the theorem.

Poiseuille flow theorem

The Poiseuille flow theorem [7] is a consequence of the Helmholtz theorem states that The steady laminar flow of an incompressible viscous fluid down a straight pipe of arbitrary cross-section is characterized by the property that its energy dissipation is least among all laminar (or spatially periodic) flows down the pipe which have the same total flux.

Related Research Articles

Divergence Vector operator producing the scalar quantity of a flow at a point

In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.

Navier–Stokes equations Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are a set of partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes.

The vorticity equation of fluid dynamics describes evolution of the vorticity ω of a particle of a fluid as it moves with its flow, that is, the local rotation of the fluid . The equation is:

In 1851, George Gabriel Stokes derived an expression, now known as Stokes law, for the frictional force – also called drag force – exerted on spherical objects with very small Reynolds numbers in a viscous fluid. Stokes' law is derived by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow, at every point, are linearly correlated to the local strain rate—the rate of change of its deformation over time. That is equivalent to saying those forces are proportional to the rates of change of the fluid's velocity vector as one moves away from the point in question in various directions.

Euler equations (fluid dynamics)

In fluid dynamics, the Euler equations are a set of quasilinear hyperbolic equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. The equations represent Cauchy equations of conservation of mass (continuity), and balance of momentum and energy, and can be seen as particular Navier–Stokes equations with zero viscosity and zero thermal conductivity. In fact, Euler equations can be obtained by linearization of some more precise continuity equations like Navier–Stokes equations in a local equilibrium state given by a Maxwellian. The Euler equations can be applied to incompressible and to compressible flow – assuming the flow velocity is a solenoidal field, or using another appropriate energy equation respectively. Historically, only the incompressible equations have been derived by Euler. However, fluid dynamics literature often refers to the full set – including the energy equation – of the more general compressible equations together as "the Euler equations".

A continuity equation in physics is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.

Circulation (physics) Line integral of the fluid velocity around a closed curve

In physics, circulation is the line integral of a vector field around a closed curve. In fluid dynamics, the field is the fluid velocity field. In electrodynamics, it can be the electric or the magnetic field.

In fluid dynamics, the Reynolds stress is the component of the total stress tensor in a fluid obtained from the averaging operation over the Navier–Stokes equations to account for turbulent fluctuations in fluid momentum.

Stokes flow

Stokes flow, also named creeping flow or creeping motion, is a type of fluid flow where advective inertial forces are small compared with viscous forces. The Reynolds number is low, i.e. . This is a typical situation in flows where the fluid velocities are very slow, the viscosities are very large, or the length-scales of the flow are very small. Creeping flow was first studied to understand lubrication. In nature this type of flow occurs in the swimming of microorganisms and sperm and the flow of lava. In technology, it occurs in paint, MEMS devices, and in the flow of viscous polymers generally.

Fluid mechanics is the branch of physics concerned with the mechanics of fluids and the forces on them. It has applications in a wide range of disciplines, including mechanical, civil, chemical and biomedical engineering, geophysics, oceanography, meteorology, astrophysics, and biology.

The intent of this article is to highlight the important points of the derivation of the Navier–Stokes equations as well as its application and formulation for different families of fluids.

Volume viscosity is a material property relevant for characterizing fluid flow. Common symbols are or . It has dimensions, and the corresponding SI unit is the pascal-second (Pa·s).

In fluid mechanics and mathematics, a capillary surface is a surface that represents the interface between two different fluids. As a consequence of being a surface, a capillary surface has no thickness in slight contrast with most real fluid interfaces.

In fluid dynamics, aerodynamic potential flow codes or panel codes are used to determine the fluid velocity, and subsequently the pressure distribution, on an object. This may be a simple two-dimensional object, such as a circle or wing, or it may be a three-dimensional vehicle.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

Hydrodynamic stability

In fluid dynamics, hydrodynamic stability is the field which analyses the stability and the onset of instability of fluid flows. The study of hydrodynamic stability aims to find out if a given flow is stable or unstable, and if so, how these instabilities will cause the development of turbulence. The foundations of hydrodynamic stability, both theoretical and experimental, were laid most notably by Helmholtz, Kelvin, Rayleigh and Reynolds during the nineteenth century. These foundations have given many useful tools to study hydrodynamic stability. These include Reynolds number, the Euler equations, and the Navier–Stokes equations. When studying flow stability it is useful to understand more simplistic systems, e.g. incompressible and inviscid fluids which can then be developed further onto more complex flows. Since the 1980s, more computational methods are being used to model and analyse the more complex flows.

In continuum mechanics, a compatible deformation tensor field in a body is that unique tensor field that is obtained when the body is subjected to a continuous, single-valued, displacement field. Compatibility is the study of the conditions under which such a displacement field can be guaranteed. Compatibility conditions are particular cases of integrability conditions and were first derived for linear elasticity by Barré de Saint-Venant in 1864 and proved rigorously by Beltrami in 1886.

The viscous stress tensor is a tensor used in continuum mechanics to model the part of the stress at a point within some material that can be attributed to the strain rate, the rate at which it is deforming around that point.

Strain-rate tensor

In continuum mechanics, the strain-rate tensor or rate-of-strain tensor is a physical quantity that describes the rate of change of the deformation of a material in the neighborhood of a certain point, at a certain moment of time. It can be defined as the derivative of the strain tensor with respect to time, or as the symmetric component of the gradient of the flow velocity. In fluid mechanics it also can be described as the velocity gradient, a measure of how the velocity of a fluid changes between different points within the fluid. Though the term can refer to the differences in velocity between layers of flow in a pipe, it is often used to mean the gradient of a flow's velocity with respect to its coordinates. The concept has implications in a variety of areas of physics and engineering, including magnetohydrodynamics, mining and water treatment.

References

  1. Helmholtz, H. (1868). Verh. naturhist.-med. Ver. Wiss. Abh, 1, 223.
  2. von Helmholtz, H. (1868). Zur Theorie der stationären Ströme in reibenden Flüssigkeiten. Verh. Naturh.-Med. Ver. Heidelb, 11, 223.
  3. Lamb, H. (1932). Hydrodynamics. Cambridge university press.
  4. Batchelor, G. K. (2000). An introduction to fluid dynamics. Cambridge university press.
  5. Korteweg, D. J. (1883). XVII. On a general theorem of the stability of the motion of a viscous fluid. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 16(98), 112-118.
  6. Rayleigh, L. (1913). LXV. On the motion of a viscous fluid. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 26(154), 776-786.
  7. Serrin, J. (1959). Mathematical principles of classical fluid mechanics. In Fluid Dynamics I/Strömungsmechanik I (pp. 125-263). Springer, Berlin, Heidelberg.