Hermite's identity

Last updated

In mathematics, Hermite's identity, named after Charles Hermite, gives the value of a summation involving the floor function. It states that for every real number x and for every positive integer n the following identity holds: [1] [2]

Contents

Proofs

Proof by algebraic manipulation

Split into its integer part and fractional part, . There is exactly one with

By subtracting the same integer from inside the floor operations on the left and right sides of this inequality, it may be rewritten as

Therefore,

and multiplying both sides by gives

Now if the summation from Hermite's identity is split into two parts at index , it becomes

Proof using functions

Consider the function

Then the identity is clearly equivalent to the statement for all real . But then we find,

Where in the last equality we use the fact that for all integers . But then has period . It then suffices to prove that for all . But in this case, the integral part of each summand in is equal to 0. We deduce that the function is indeed 0 for all real inputs .

Related Research Articles

In mathematics, the classic Möbius inversion formula is a relation between pairs of arithmetic functions, each defined from the other by sums over divisors. It was introduced into number theory in 1832 by August Ferdinand Möbius.

<span class="mw-page-title-main">Floor and ceiling functions</span> Nearest integers from a number

In mathematics and computer science, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted x or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted x or ceil(x).

In mathematics, the Hermite polynomials are a classical orthogonal polynomial sequence.

In mathematics, summation is the addition of a sequence of any kind of numbers, called addends or summands; the result is their sum or total. Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

<span class="mw-page-title-main">Mertens function</span> Summatory function of the Möbius function

In number theory, the Mertens function is defined for all positive integers n as

In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. No such formula which is efficiently computable is known. A number of constraints are known, showing what such a "formula" can and cannot be.

In mathematics, the Iverson bracket, named after Kenneth E. Iverson, is a notation that generalises the Kronecker delta, which is the Iverson bracket of the statement x = y. It maps any statement to a function of the free variables in that statement. This function is defined to take the value 1 for the values of the variables for which the statement is true, and takes the value 0 otherwise. It is generally denoted by putting the statement inside square brackets:

In mathematics, the Legendre sieve, named after Adrien-Marie Legendre, is the simplest method in modern sieve theory. It applies the concept of the Sieve of Eratosthenes to find upper or lower bounds on the number of primes within a given set of integers. Because it is a simple extension of Eratosthenes' idea, it is sometimes called the Legendre–Eratosthenes sieve.

In mathematics, especially in combinatorics, Stirling numbers of the first kind arise in the study of permutations. In particular, the Stirling numbers of the first kind count permutations according to their number of cycles.

Euclid's theorem is a fundamental statement in number theory that asserts that there are infinitely many prime numbers. It was first proved by Euclid in his work Elements. There are several proofs of the theorem.

A decimal representation of a non-negative real number r is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator:

In mathematics, trailing zeros are a sequence of 0 in the decimal representation of a number, after which no other digits follow.

In mathematics, a Beatty sequence is the sequence of integers found by taking the floor of the positive multiples of a positive irrational number. Beatty sequences are named after Samuel Beatty, who wrote about them in 1926.

In mathematics, Abel's summation formula, introduced by Niels Henrik Abel, is intensively used in analytic number theory and the study of special functions to compute series.

In the 1760s, Johann Heinrich Lambert was the first to prove that the number π is irrational, meaning it cannot be expressed as a fraction , where and are both integers. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus. Three simplifications of Hermite's proof are due to Mary Cartwright, Ivan Niven, and Nicolas Bourbaki. Another proof, which is a simplification of Lambert's proof, is due to Miklós Laczkovich. Many of these are proofs by contradiction.

In the mathematical theory of non-standard positional numeral systems, the Komornik–Loreti constant is a mathematical constant that represents the smallest base q for which the number 1 has a unique representation, called its q-development. The constant is named after Vilmos Komornik and Paola Loreti, who defined it in 1998.

The Meissel–Lehmer algorithm is an algorithm that computes exact values of the prime-counting function.

In number theory, the prime omega functions and count the number of prime factors of a natural number Thereby counts each distinct prime factor, whereas the related function counts the total number of prime factors of honoring their multiplicity. That is, if we have a prime factorization of of the form for distinct primes , then the respective prime omega functions are given by and . These prime factor counting functions have many important number theoretic relations.

The purpose of this page is to catalog new, interesting, and useful identities related to number-theoretic divisor sums, i.e., sums of an arithmetic function over the divisors of a natural number , or equivalently the Dirichlet convolution of an arithmetic function with one:

In analytic number theory, a Dirichlet series, or Dirichlet generating function (DGF), of a sequence is a common way of understanding and summing arithmetic functions in a meaningful way. A little known, or at least often forgotten about, way of expressing formulas for arithmetic functions and their summatory functions is to perform an integral transform that inverts the operation of forming the DGF of a sequence. This inversion is analogous to performing an inverse Z-transform to the generating function of a sequence to express formulas for the series coefficients of a given ordinary generating function.

References

  1. Savchev, Svetoslav; Andreescu, Titu (2003), "12 Hermite's Identity", Mathematical Miniatures, New Mathematical Library, vol. 43, Mathematical Association of America, pp. 41–44, ISBN   9780883856451 .
  2. Matsuoka, Yoshio (1964), "Classroom Notes: On a Proof of Hermite's Identity", The American Mathematical Monthly , 71 (10): 1115, doi:10.2307/2311413, JSTOR   2311413, MR   1533020 .