Herrick HV-2A Vertaplane

Last updated

The Herrick HV-2 Vertaplane (Herrick Vertoplane-2) was one of the world's first convertiplanes and was designed by Gerard P. Herrick, a pioneer in the field of VTOL in the 1930s. Herrick's concept called for an aircraft that had a fixed lower wing and an upper wing that could rotate about the vertical axis. [1] The upper rotor wing could be stopped or started both on the ground and in the air. The HV-2 was the first aircraft with an in-flight stoppable rotor to actually use this compound system to generate lift and propulsion in a number of test flights and to perform an in-flight transition. [2]

Contents

Modern counterparts using a similar propulsion concept include the Sikorsky S-72 and the Boeing X-50.

History

The main motivation for developing the convertiplane was to build a stall-proof aircraft. Herrick envisioned the rotating wing as a type of parachute to be used in an emergency during critical takeoff and landing phases. To this end, the rotor wing was to be capable of being started or stopped both in flight and on the ground. Herrick's projects, carried out between 1931 and 1937, differed from modern stop-rotor concepts in that the rotor was not actively driven but operated in autogyro mode. [3]

During the development phase, Herrick changed the name of his aircraft several times, using the designations Vertoplane, Vertaplane, Convertoplane, and Convertaplane. The Convertible Aircraft Congress also referred to him as the father of the convertiplane when awarding him a plaque for his life's work.

HV-1

The HV-1 was the first aircraft designed by Herrick. The single-seater had a 40-horsepower Poyer engine and was equipped with a short-span lower wing and an 11.00-meter-diameter Teeter-type upper rotor wing on a pylon above the cockpit. [4] The HV-1 prototype had its first flight as a fixed-wing aircraft at Niles, Michigan, on November 6, 1931. Later launches were also made with the rotor rotating as an autogyro, but when the upper wing was launched in flight, it struck the vertical stabilizer and stopped in the position parallel to the fuselage. Although the pilot was able to bail out, the altitude was so low that his parachute failed to open. The HV-1 was destroyed in the accident. [5]

HV-2A

Herrick, with the help of aeronautical engineer Ralph McLaren, then began construction of a revised variant designated the HV-2A. Like the HV-1, the prototype was built by Heath Aircraft, a small manufacturer of home-built aircraft. The upper wing had a span of only 7.32 m to prevent contact with the vertical stabilizer.

Test flights of the HV-2A were made by 22-year-old George Townson, who had no previous experience with autogyros. He was paid $25 for each flight hour, $12.50 for taxiing hours, and $1.50 each for consulting hours. The first flight as a fixed-wing aircraft was made on October 31, 1936, with subsequent testing at Boulevard Airport in the outer boroughs of Philadelphia. This was followed by initial taxi tests and flights in autogyro mode. [6] The flights proceeded in such a way that the rotor was set in motion by briefly bumping it while stationary, the aircraft then rolled along the periphery of the field to increase the speed of the rotor, finally taxied to the start of the runway and took off into the wind. The flights were all in a straight flight path at a maximum altitude of only about 15 m. The stall speed in fixed-wing mode was 64 km/h and in autogyro mode 56 km/h, demonstrating that the rotor could perform a lift function. Below 56 km/h, vertical descent occurred without stall effects.

Flights at higher altitudes of 400 m and first turns took place between Boulevard Airport and a smaller airfield about 1.6 kilometers away. The first transition between fixed-wing and autogyro configuration took place on July 26, 1937. To do this, the procedure was to tension the rubber cord in the upper wing with two rotor turns and, after takeoff at 80 km/h at an altitude of 45 m, release the upper wing lock. On the first such attempt, Townson struggled with severe oscillations about all three axes that did not subside until the rotor speed reached 250 rpm. This flight is considered the first successful transition of a convertible aircraft. A second successful attempt occurred on July 30, 1937, this time under scrutiny by the media and members of the NACA and military staffs.

Between 1937 and 1939, the year the aircraft was retired, about 100 more transitions were made in the air. The aircraft was then transferred to the National Air and Space Museum, where it was displayed hanging from the ceiling of Building 23 in Silver Hill, Maryland.

Design

The HV-1 and HV-2 concept differed from later designs in that Herrick's rotor was not powered, but operated only in autogyro mode. The HV-2A was powered by a 5-cylinder Kinner radial engine. The lower wing had a Clark-Y airfoil, a structure of wood with plywood planking. The upper wing, also constructed of wood with a Herrick M-7-II airfoil, had double planking. The symmetrical airfoil, with a curved top and flat bottom, had a depth of 1.20 m at the center, tapering to 0.60 m at the wingtips. The fuselage and empennage were fabric-covered and conventionally constructed of welded tubes. The cost of construction was reported to have been $1500.

The rotating surface had no control system and was equipped only with an unlocking lever. In the locked position, the upper wing was oriented parallel to the lower wing; after unlocking, the upper wing began to rotate as a rotor. As with the HV-1, this was mounted on a pivot. A hinge joint allowed a "rocking" motion, i.e., the rotor moved upward when turning toward the nose and downward when turning backward. A hydraulic damping system limited the swings.

In order to start the rotor rotating after the rotor lock was released, even in possible emergencies where rotation was not automatically initiated, the HV-2A had a special Bendix ignition system. This consisted of a small turbine, a drive shaft, and a latch containing a cartridge with igniter. After the latch was opened, the fuze was triggered electrically. The gases from the cartridge, which passed through a tube, drove the turbine, which acted on the drive shaft. This brought the rotor up to a speed of about 60 per minute within a few revolutions. The airstream then ensured that a stable speed of about 250/min was eventually established. However, this emergency system was never used during testing.

If the rotor was already set in rotation on the ground, this was done according to the following procedure: With the help of four people (two at each rotor tip), a rubber cable, which was located in a tube inside the wing, was stretched by turning the rotor backward two turns. The cable was connected to another cable that was wrapped around a drum on the rotor head. After releasing the cable, the rotor accelerated to a speed of about 60 r/min.

Related Research Articles

<span class="mw-page-title-main">Aircraft</span> Vehicle or machine that is able to fly by gaining support from the air

An aircraft is a vehicle that is able to fly by gaining support from the air. It counters the force of gravity by using either static lift or by using the dynamic lift of an airfoil, or in a few cases the downward thrust from jet engines. Common examples of aircraft include airplanes, helicopters, airships, gliders, paramotors, and hot air balloons.

A vertical take-off and landing (VTOL) aircraft is one that can take off and land vertically without relying on a runway. This classification can include a variety of types of aircraft including helicopters as well as thrust-vectoring fixed-wing aircraft and other hybrid aircraft with powered rotors such as cyclogyros/cyclocopters and gyrodynes.

<span class="mw-page-title-main">Tiltrotor</span> Aircraft type

A tiltrotor is an aircraft which generates lift and propulsion by way of one or more powered rotors mounted on rotating shafts or nacelles usually at the ends of a fixed wing. Almost all tiltrotors use a transverse rotor design, with a few exceptions that use other multirotor layouts.

The CarterCopter is an experimental compound autogyro developed by Carter Aviation Technologies in the United States to demonstrate slowed rotor technology. On 17 June 2005, the CarterCopter became the first rotorcraft to achieve mu-1 (μ=1), an equal ratio of airspeed to rotor tip speed, but crashed on the next flight and has been inoperable since. It is being replaced by the Carter Personal Air Vehicle.

<span class="mw-page-title-main">Fairey Rotodyne</span> 1950s British compound gyroplane

The Fairey Rotodyne was a 1950s British compound gyroplane designed and built by Fairey Aviation and intended for commercial and military uses. A development of the earlier Gyrodyne, which had established a world helicopter speed record, the Rotodyne featured a tip-jet-powered rotor that burned a mixture of fuel and compressed air bled from two wing-mounted Napier Eland turboprops. The rotor was driven for vertical takeoffs, landings and hovering, as well as low-speed translational flight, but autorotated during cruise flight with all engine power applied to two propellers.

<span class="mw-page-title-main">Bell XV-15</span> American experimental tiltrotor aircraft

The Bell XV-15 is an American tiltrotor VTOL aircraft. It was the second successful experimental tiltrotor aircraft and the first to demonstrate the concept's high speed performance relative to conventional helicopters.

<span class="mw-page-title-main">Boeing X-50 Dragonfly</span> US experimental drone aircraft

The Boeing X-50A Dragonfly, formerly known as the Canard Rotor/Wing Demonstrator, was a VTOL rotor wing experimental unmanned aerial vehicle that was developed by Boeing and DARPA to demonstrate the principle that a helicopter's rotor could be stopped in flight and act as a fixed wing, enabling it to transition between fixed-wing and rotary-wing flight.

<span class="mw-page-title-main">Gyrodyne</span>

A gyrodyne is a type of VTOL aircraft with a helicopter rotor-like system that is driven by its engine for takeoff and landing only, and includes one or more conventional propeller or jet engines to provide forward thrust during cruising flight. During forward flight the rotor is unpowered and free-spinning, like an autogyro, and lift is provided by a combination of the rotor and conventional wings. The gyrodyne is one of a number of similar concepts which attempt to combine helicopter-like low-speed performance with conventional fixed-wing high-speeds, including tiltrotors and tiltwings.

<span class="mw-page-title-main">Bell XV-3</span> Experimental tiltrotor aircraft to explore convertiplane technologies

The Bell XV-3 is an American tiltrotor aircraft developed by Bell Helicopter for a joint research program between the United States Air Force and the United States Army in order to explore convertiplane technologies. The XV-3 featured an engine mounted in the fuselage with driveshafts transferring power to two-bladed rotor assemblies mounted on the wingtips. The wingtip rotor assemblies were mounted to tilt 90 degrees from vertical to horizontal, designed to allow the XV-3 to take off and land like a helicopter but fly at faster airspeeds, similar to a conventional fixed-wing aircraft.

<span class="mw-page-title-main">Rotorcraft</span> Heavier-than-air aircraft which generates lift over rotating wings

A rotorcraft or rotary-wing aircraft is a heavier-than-air aircraft with rotary wings or rotor blades, which generate lift by rotating around a vertical mast. Several rotor blades mounted on a single mast are referred to as a rotor. The International Civil Aviation Organization (ICAO) defines a rotorcraft as "supported in flight by the reactions of the air on one or more rotors".

A convertiplane is defined by the Fédération Aéronautique Internationale as an aircraft which uses rotor power for vertical takeoff and landing (VTOL) and converts to fixed-wing lift in normal flight. In the US it is further classified as a sub-type of powered lift. In popular usage it sometimes includes any aircraft that converts in flight to change its method of obtaining lift.

<span class="mw-page-title-main">Powered lift</span>

A powered lift aircraft takes off and lands vertically under engine power but uses a fixed wing for horizontal flight. Like helicopters, these aircraft do not need a long runway to take off and land, but they have a speed and performance similar to standard fixed-wing aircraft in combat or other situations.

<span class="mw-page-title-main">Proprotor</span>

A proprotor is a spinning airfoil that function as both an airplane-style propeller and a helicopter-style rotor. Several proprotor-equipped convertiplanes, such as the Bell Boeing V-22 Osprey tiltrotor, are capable of switching back and forth between flying akin to both helicopters and fixed-wing aircraft. Accordingly this type of airfoil has been predominantly applied to vertical takeoff and landing (VTOL) aircraft.

<span class="mw-page-title-main">McDonnell XV-1</span> American experimental gyrodyne

The McDonnell XV-1 is an experimental Convertiplane developed by McDonnell Aircraft for a joint research program between the United States Air Force and the United States Army to explore technologies to develop an aircraft that could take off and land like a helicopter but fly at faster airspeeds, similar to a conventional airplane. The XV-1 would reach a speed of 200 mph, faster than any previous rotorcraft, but the program was terminated due to the tip-jet noise and complexity of the technology which gave only a modest gain in performance.

<span class="mw-page-title-main">Slowed rotor</span> Helicopter design variant

The slowed rotor principle is used in the design of some helicopters. On a conventional helicopter the rotational speed of the rotor is constant; reducing it at lower flight speeds can reduce fuel consumption and enable the aircraft to fly more economically. In the compound helicopter and related aircraft configurations such as the gyrodyne and winged autogyro, reducing the rotational speed of the rotor and offloading part of its lift to a fixed wing reduces drag, enabling the aircraft to fly faster.

A rotor wing is a lifting rotor or wing which spins to provide aerodynamic lift. In general, a rotor may spin about an axis which is aligned substantially either vertically or side-to-side (spanwise). All three classes have been studied for use as lifting rotors and several variations have been flown on full-size aircraft, although only the vertical-axis rotary wing has become widespread on rotorcraft such as the helicopter.

<span class="mw-page-title-main">Kayaba Heliplane</span> Japanese gyrodyne prototype

The Kayaba Heliplane Type-1 was a gyrodyne designed by Shiro Kayaba and prototyped by Kayaba Industry in Japan during the early 1950s.

A cruciform wing is a set of four individual wings arranged in the shape of a cross. The cross may take either of two forms; the wings may be equally spaced around the cross-section of the fuselage, lying in two planes at right angles, as on a typical missile, or they may lie together in a single horizontal plane about a vertical axis, as in the cruciform rotor wing or X-wing.

<span class="mw-page-title-main">Wilford Gyroplane</span> 1930s American autogyro

The Wilford Gyroplane was based on a German autogyro first flown in 1926. After E. Burke Wilford bought the rights and patents, it was developed in the US until 1936.

References

  1. "Herrick HV-2A Vertaplane". 1000aircraftphotos.com. Retrieved 2022-11-11.
  2. Markman, Steve (2000). Straight up : a history of vertical flight. William G. Holder. Atglen, PA: Schiffer Pub. pp. 11–12. ISBN   0-7643-1204-9. OCLC   46790785.
  3. "Abandoned & Little-Known Airfields: New York City, Brooklyn". www.airfields-freeman.com. Retrieved 2022-11-11.
  4. Liberatore, Eugene K., ed. (1954). Rotary Wing Aircraft Handbooks and History: Convertible aircraft. U.S. Department of Commerce, Business and Defense Services Administration, Office of Technical Services. pp. 39–40.
  5. "VFS - July 2012". vtol.org. Retrieved 2022-11-11.
  6. Prouty, Raymond W. (2009). Helicopter aerodynamics. Shawn Coyle, Raymond W. Prouty, Raymond W. Prouty, Raymond W. Prouty. Lebanon, Ohio: Eagle Eye Solutions. pp. 334–337. ISBN   978-0-557-08991-8. OCLC   747553392.