Hexoloy

Last updated

Hexoloy is a registered trademark for a pressureless sintered form of alpha silicon carbide. Hexoloy SA is made by sintering silicon carbide powder. This process bonds the powder together to create a self-bonded product which is extremely hard and lightweight. It has a high resistance to corrosion, erosion, high temperature and thermal shock. [1] It is ideal for applications involving liquid and hot gas exposure, mechanical seal faces, mineral and chemical processing kilns and furnaces. Even with use at high temperatures Hexoloy maintains high strength and stability. Hexoloy has high thermal conductivity, equal to that of stainless steel and 5 times that of alumina and excellent wear resistance – 50% harder than tungsten carbide.

Contents

History

Sintered silicon carbide was patented by the Pittsburgh-based Carborundum Corporation in 1979 under U.S. patent 4,179,299. It is currently held by Saint-Gobain. It was registered and trademarked as Hexoloy in 1984. The first large commercial use for Hexoloy was in vehicle water pump seals. [2] [3] [4]

See also

Related Research Articles

Ceramic Inorganic, nonmetallic solid prepared by the action of heat

A ceramic is any of the various hard, brittle, heat-resistant and corrosion-resistant materials made by shaping and then firing a nonmetallic mineral, such as clay, at a high temperature. Common examples are earthenware, porcelain, and brick.

Sintering Process of forming and bonding material by heat or pressure

Sintering or frittage is the process of compacting and forming a solid mass of material by heat or pressure without melting it to the point of liquefaction.

Silicon carbide extremely hard semiconductor containing silicon and carbon

Silicon carbide (SiC), also known as carborundum, is a semiconductor containing silicon and carbon. It occurs in nature as the extremely rare mineral moissanite. Synthetic SiC powder has been mass-produced since 1893 for use as an abrasive. Grains of silicon carbide can be bonded together by sintering to form very hard ceramics that are widely used in applications requiring high endurance, such as car brakes, car clutches and ceramic plates in bulletproof vests. Electronic applications of silicon carbide such as light-emitting diodes (LEDs) and detectors in early radios were first demonstrated around 1907. SiC is used in semiconductor electronics devices that operate at high temperatures or high voltages, or both. Large single crystals of silicon carbide can be grown by the Lely method and they can be cut into gems known as synthetic moissanite.

A cermet is a composite material composed of ceramic (cer) and metal (met) materials.

Selective laser sintering 3D printing technique

Selective laser sintering (SLS) is an additive manufacturing (AM) technique that uses a laser as the power source to sinter powdered material, aiming the laser automatically at points in space defined by a 3D model, binding the material together to create a solid structure. It is similar to selective laser melting; the two are instantiations of the same concept but differ in technical details. SLS is a relatively new technology that so far has mainly been used for rapid prototyping and for low-volume production of component parts. Production roles are expanding as the commercialization of AM technology improves.

Refractory

A refractory material or refractory is a material that is resistant to decomposition by heat, pressure, or chemical attack, and retains strength and form at high temperatures. Refractories are inorganic, nonmetallic, porous, and heterogeneous. They are typically composed of oxides or non oxides like carbides, nitrides etc. of the following materials: silicon, aluminium, magnesium, calcium, and zirconium. Some metals with melting points >1850°C like niobium, chromium, zirconium, tungsten, rhenium, tantalum etc. are also considered as refractories.

Transparent ceramics Type of weapon

Many ceramic materials, both glassy and crystalline, have found use as optically transparent materials in various forms from bulk solid-state components to high surface area forms such as thin films, coatings, and fibers. Such devices have found widespread use for various applications in the electro-optical field including: optical fibers for guided lightwave transmission, optical switches, laser amplifiers and lenses, hosts for solid-state lasers and optical window materials for gas lasers, and infrared (IR) heat seeking devices for missile guidance systems and IR night vision.

Titanium diboride

Titanium diboride (TiB2) is an extremely hard ceramic which has excellent heat conductivity, oxidation stability and wear resistance. TiB2 is also a reasonable electrical conductor, so it can be used as a cathode material in aluminium smelting and can be shaped by electrical discharge machining.

Tantalum carbide

Tantalum carbides (TaC)form a family of binary chemical compounds of tantalum and carbon with the empirical formula TaCx, where x usually varies between 0.4 and 1. They are extremely hard, brittle, refractory ceramic materials with metallic electrical conductivity. They appear as brown-gray powders, which are usually processed by sintering.

Heating element Device that converts electricity into heat

A heating element converts electrical energy into heat through the process of Joule heating. Electric current through the element encounters resistance, resulting in heating of the element. Unlike the Peltier effect, this process is independent of the direction of current.

Zirconium carbide

Zirconium carbide (ZrC) is an extremely hard refractory ceramic material, commercially used in tool bits for cutting tools. It is usually processed by sintering.

Silicon nitride Compound of silicon and nitrogen

Silicon nitride is a chemical compound of the elements silicon and nitrogen. Si
3
N
4
is the most thermodynamically stable of the silicon nitrides. Hence, Si
3
N
4
is the most commercially important of the silicon nitrides when referring to the term "silicon nitride". It is a white, high-melting-point solid that is relatively chemically inert, being attacked by dilute HF and hot H
2
SO
4
. It is very hard. It has a high thermal stability.

Ceramic engineering The science and technology of creating objects from inorganic, non-metallic materials

Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions. The term includes the purification of raw materials, the study and production of the chemical compounds concerned, their formation into components and the study of their structure, composition and properties.

Diamond tool

A diamond tool is a cutting tool with diamond grains fixed on the functional parts of the tool via a bonding material or another method. As diamond is a superhard material, diamond tools have many advantages as compared with tools made with common abrasives such as corundum and silicon carbide.

Sialon

SiAlON ceramics are a specialist class of high-temperature refractory materials, with high strength at ambient and high temperatures, good thermal shock resistance and exceptional resistance to wetting or corrosion by molten non-ferrous metals, compared to other refractory materials such as, for example, alumina. A typical use is with handling of molten aluminium. They also are exceptionally corrosion resistant and hence are also used in the chemical industry. SiAlONs also have high wear resistance, low thermal expansion and good oxidation resistance up to above ~1000 °C. They were first reported around 1971.

Cemented carbide Type of composite material

Cemented carbide is a hard material used extensively as cutting tool material, as well as other industrial applications. It consists of fine particles of carbide cemented into a composite by a binder metal. Cemented carbides commonly use tungsten carbide (WC), titanium carbide (TiC), or tantalum carbide (TaC) as the aggregate. Mentions of "carbide" or "tungsten carbide" in industrial contexts usually refer to these cemented composites.

Ceramic matrix composite

Ceramic matrix composites (CMCs) are a subgroup of composite materials and a subgroup of ceramics. They consist of ceramic fibers embedded in a ceramic matrix. The fibers and the matrix both can consist of any ceramic material, whereby carbon and carbon fibers can also be regarded as a ceramic material.

Hot pressing is a high-pressure, low-strain-rate powder metallurgy process for forming of a powder or powder compact at a temperature high enough to induce sintering and creep processes. This is achieved by the simultaneous application of heat and pressure.

Ultra-high-temperature ceramics (UHTCs) are a class of refractory ceramics that offer excellent stability at temperatures exceeding 2000 °C being investigated as possible thermal protection system (TPS) materials, coatings for materials subjected to high temperatures, and bulk materials for heating elements. Broadly speaking, UHTCs are borides, carbides, nitrides, and oxides of early transition metals. Current efforts have focused on heavy, early transition metal borides such as hafnium diboride (HfB2) and zirconium diboride (ZrB2); additional UHTCs under investigation for TPS applications include hafnium nitride (HfN), zirconium nitride (ZrN), titanium carbide (TiC), titanium nitride (TiN), thorium dioxide (ThO2), tantalum carbide (TaC) and their associated composites.

The Allomet Corporation is a privately owned company located in North Huntingdon, Pennsylvania that produces a line of patented powdered metal products known as EternAloy® Tough-Coated Hard Powders (TCHP).

References

  1. "Hexoloy SA". Pyrosales.
  2. "Sintered Alpha Silicon Carbide Patent", "US Patent Office", Retrieved 15 September 2011.
  3. "Sintered Silicon Carbide ( SiC )". National Institute of Standards and Technology. Archived from the original on 24 November 2011. Retrieved 15 September 2011.
  4. "Saint-Gobain Ceramics". Saint-Gobain Ceramics. Retrieved 15 September 2011.