Hexosamines

Last updated
Chemical structure of a-D-glucosamine. Note amine group (NH2). Alpha-D-glucosamine.svg
Chemical structure of α-D-glucosamine. Note amine group (NH2).
Glucose. Note hydroxy group (OH) in place of the amine. Alpha-D-Glucose.svg
Glucose. Note hydroxy group (OH) in place of the amine.

Hexosamines are amino sugars created by adding an amine group to a hexose.

Examples include:


Related Research Articles

<span class="mw-page-title-main">Hemolymph</span> Body fluid that circulates in the interior of an arthropod body

Hemolymph, or haemolymph, is a fluid, analogous to the blood in vertebrates, that circulates in the interior of the arthropod (invertebrate) body, remaining in direct contact with the animal's tissues. It is composed of a fluid plasma in which hemolymph cells called hemocytes are suspended. In addition to hemocytes, the plasma also contains many chemicals. It is the major tissue type of the open circulatory system characteristic of arthropods. In addition, some non-arthropods such as mollusks possess a hemolymphatic circulatory system.

<span class="mw-page-title-main">Sclera</span> White part of an eyeball

The sclera, also known as the white of the eye or, in older literature, as the tunica albuginea oculi, is the opaque, fibrous, protective, outer layer of the human eye containing mainly collagen and some crucial elastic fiber. In humans, and some other vertebrates, the whole sclera is white, contrasting with the coloured iris, but in most mammals, the visible part of the sclera matches the colour of the iris, so the white part does not normally show while other vertebrates have distinct colors for both of them. In the development of the embryo, the sclera is derived from the neural crest. In children, it is thinner and shows some of the underlying pigment, appearing slightly blue. In the elderly, fatty deposits on the sclera can make it appear slightly yellow. People with dark skin can have naturally darkened sclerae, the result of melanin pigmentation.

<span class="mw-page-title-main">Alkaliphile</span>

Alkaliphiles are a class of extremophilic microbes capable of survival in alkaline environments, growing optimally around a pH of 10. These bacteria can be further categorized as obligate alkaliphiles, facultative alkaliphiles and haloalkaliphiles.

Glucosamine (C6H13NO5) is an amino sugar and a prominent precursor in the biochemical synthesis of glycosylated proteins and lipids. Glucosamine is part of the structure of two polysaccharides, chitosan and chitin. Glucosamine is one of the most abundant monosaccharides. Produced commercially by the hydrolysis of shellfish exoskeletons or, less commonly, by fermentation of a grain such as corn or wheat, glucosamine has many names depending on country.

<span class="mw-page-title-main">Maclyn McCarty</span> Biology research scientist, focused on DNA

Maclyn McCarty was an American geneticist, a research scientist described in 2005 as "the last surviving member of a Manhattan scientific team that overturned medical dogma in the 1940s and became the first to demonstrate that genes were made of DNA." He had worked at Rockefeller University "for more than 60 years." 1994 marked 50 years since this work's release.

<span class="mw-page-title-main">Galactosamine</span> Chemical compound

Galactosamine is a hexosamine derived from galactose with the molecular formula C6H13NO5. This amino sugar is a constituent of some glycoprotein hormones such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH).

<span class="mw-page-title-main">Daunosamine</span> Chemical compound

Daunosamine is a deoxy sugar and amino sugar of the hexosamine class.

<span class="mw-page-title-main">Hexosaminidase</span> Class of enzymes

Hexosaminidase is an enzyme involved in the hydrolysis of terminal N-acetyl-D-hexosamine residues in N-acetyl-β-D-hexosaminides.

N-acetylgalactosamine-4-sulfatase is an enzyme with systematic name N-acetyl-D-galactosamine-4-sulfate 4-sulfohydrolase. It catalyses the following reaction:

<span class="mw-page-title-main">Mannosamine</span> Chemical compound

D-Mannosamine (2-amino-2-deoxymannose) is a hexosamine derivative of mannose.

<span class="mw-page-title-main">Azaserine</span> Chemical compound

Azaserine is a naturally occurring serine derivative diazo compound with antineoplastic and antibiotic properties deriving from its action as a purinergic antagonist and structural similarity to glutamine. Azaserine acts by competitively inhibiting glutamine amidotransferase, a key enzyme responsible for glutamine metabolism.

In enzymology, a N-acetylhexosamine 1-dehydrogenase (EC 1.1.1.240) is an enzyme that catalyzes the chemical reaction

Uridine diphosphate <i>N</i>-acetylglucosamine Chemical compound

Uridine diphosphate N-acetylglucosamine or UDP-GlcNAc is a nucleotide sugar and a coenzyme in metabolism. It is used by glycosyltransferases to transfer N-acetylglucosamine residues to substrates. D-Glucosamine is made naturally in the form of glucosamine-6-phosphate, and is the biochemical precursor of all nitrogen-containing sugars. To be specific, glucosamine-6-phosphate is synthesized from fructose 6-phosphate and glutamine as the first step of the hexosamine biosynthesis pathway. The end-product of this pathway is UDP-GlcNAc, which is then used for making glycosaminoglycans, proteoglycans, and glycolipids.

In enzymology, a N-acylhexosamine oxidase (EC 1.1.3.29) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glucosamine-phosphate N-acetyltransferase</span>

In enzymology, glucosamine-phosphate N-acetyltransferase (GNA) is an enzyme that catalyzes the transfer of an acetyl group from acetyl-CoA to the primary amine in glucosamide-6-phosphate, generating a free CoA and N-acetyl-D-glucosamine-6-phosphate.

In enzymology, a 1,3-beta-galactosyl-N-acetylhexosamine phosphorylase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">GFPT1</span> Protein-coding gene in the species Homo sapiens

Glucosamine—fructose-6-phosphate aminotransferase isomerizing 1 is an enzyme that in humans is encoded by the GFPT1 gene.

N-acetylhexosamine 1-kinase is an enzyme with systematic name ATP:N-acetyl-D-hexosamine 1-phosphotransferase. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Eggshell membrane</span>

Eggshell membrane or shell membrane is the clear film lining eggshells, visible when one peels a boiled bird egg. Chicken eggshell membranes are used as a dietary supplement.

<i>O</i>-GlcNAc

O-GlcNAc is a reversible enzymatic post-translational modification that is found on serine and threonine residues of nucleocytoplasmic proteins. The modification is characterized by a β-glycosidic bond between the hydroxyl group of serine or threonine side chains and N-acetylglucosamine (GlcNAc). O-GlcNAc differs from other forms of protein glycosylation: (i) O-GlcNAc is not elongated or modified to form more complex glycan structures, (ii) O-GlcNAc is almost exclusively found on nuclear and cytoplasmic proteins rather than membrane proteins and secretory proteins, and (iii) O-GlcNAc is a highly dynamic modification that turns over more rapidly than the proteins which it modifies. O-GlcNAc is conserved across metazoans.