Names | |
---|---|
IUPAC name 2-Amino-2-deoxy-D-galactose | |
Other names α-D-galactosamine | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChEMBL | |
ChemSpider | |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C6H13NO5 | |
Molar mass | 179.172 g·mol−1 |
Melting point | 180 °C (356 °F; 453 K) (HCl salt) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Galactosamine is a hexosamine derived from galactose with the molecular formula C6H13NO5. This amino sugar is a constituent of some glycoprotein hormones such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH).
Precursors such as uridine diphosphate (UDP), UDP-N-acetyl-D-glucosamine, or glucosamine are used to synthesize galactosamine in the human body. A derivative of this compound is N-acetyl-D-galactosamine. [2]
Galactosamine is a hepatotoxic, or liver-damaging, agent that is sometimes used in animal models of liver failure.
Galactosamine is used to induce hepatitis in rodent liver for research purposes. The result of using galactosamine to induce hepatitis is a disease model in which there is necrosis and inflammation of the liver. This type of tissue damage triggered by galactosamine resembles drug-induced liver disease in humans. [3]
The proposed mechanism behind galactosamine-induced hepatitis is depletion of the energy source of hepatocytes. In the Leloir pathway galactosamine is metabolized into galactosamine-1-phosphate (by galactokinase) and UDP-galactosamine (by UDP-galactose uridyltransferase). It is hypothesized that this leads to UDP-galactosamine accumulation within cells, and uridine triphosphate (UTP), UDP, and uridine monophosphate (UMP) decrease. [2] The depletion of high-energy molecules such as UTP leads to a disruption in hepatocyte metabolism. Additionally, other derivatives of uridine such as UDP-glucose are depleted and this interferes with glycogen synthesis in the cell.
Another recent hypothesis states that overexpression of pro-inflammatory cytokines (such as [[tumor necrosis factor (TNFα) and NFκB-dependent inducible nitric oxide synthase (iNOS) over expression play a role in galactosamine-induced damage to liver cells. [3]
Alcoholic liver disease (ALD), also called alcohol-related liver disease (ARLD), is a term that encompasses the liver manifestations of alcohol overconsumption, including fatty liver, alcoholic hepatitis, and chronic hepatitis with liver fibrosis or cirrhosis.
Hepatotoxicity implies chemical-driven liver damage. Drug-induced liver injury is a cause of acute and chronic liver disease caused specifically by medications and the most common reason for a drug to be withdrawn from the market after approval.
Uridine-5′-triphosphate (UTP) is a pyrimidine nucleoside triphosphate, consisting of the organic base uracil linked to the 1′ carbon of the ribose sugar, and esterified with tri-phosphoric acid at the 5′ position. Its main role is as substrate for the synthesis of RNA during transcription. UTP is the precursor for the production of CTP via CTP synthetase. UTP can be biosynthesized from UDP by Nucleoside Diphosphate Kinase after using the phosphate group from ATP. UDP + ATP ⇌ UTP + ADP; both UTP and ATP are energetically equal.
Alcoholic hepatitis is hepatitis due to excessive intake of alcohol. Patients typically have a history of at least 10 years of heavy alcohol intake, typically 8-10 drinks per day. It is usually found in association with fatty liver, an early stage of alcoholic liver disease, and may contribute to the progression of fibrosis, leading to cirrhosis. Symptoms may present acutely after a large amount of alcoholic intake in a short time period, or after years of excess alcohol intake. Signs and symptoms of alcoholic hepatitis include jaundice, ascites, fatigue and hepatic encephalopathy. Mild cases are self-limiting, but severe cases have a high risk of death. Severe cases may be treated with glucocorticoids. The condition often comes on suddenly and may progress in severity very rapidly.
Cell damage is a variety of changes of stress that a cell suffers due to external as well as internal environmental changes. Amongst other causes, this can be due to physical, chemical, infectious, biological, nutritional or immunological factors. Cell damage can be reversible or irreversible. Depending on the extent of injury, the cellular response may be adaptive and where possible, homeostasis is restored. Cell death occurs when the severity of the injury exceeds the cell's ability to repair itself. Cell death is relative to both the length of exposure to a harmful stimulus and the severity of the damage caused. Cell death may occur by necrosis or apoptosis.
NAPQI, also known as NAPBQI or N-acetyl-p-benzoquinone imine, is a toxic byproduct produced during the xenobiotic metabolism of the analgesic paracetamol (acetaminophen). It is normally produced only in small amounts, and then almost immediately detoxified in the liver.
UTP—glucose-1-phosphate uridylyltransferase also known as glucose-1-phosphate uridylyltransferase is an enzyme involved in carbohydrate metabolism. It synthesizes UDP-glucose from glucose-1-phosphate and UTP; i.e.,
Galactose epimerase deficiency, also known as GALE deficiency, Galactosemia III and UDP-galactose-4-epimerase deficiency, is a rare, autosomal recessive form of galactosemia associated with a deficiency of the enzyme galactose epimerase.
Tunicamycin is a mixture of homologous nucleoside antibiotics that inhibits the UDP-HexNAc: polyprenol-P HexNAc-1-P family of enzymes. In eukaryotes, this includes the enzyme GlcNAc phosphotransferase (GPT), which catalyzes the transfer of N-acetylglucosamine-1-phosphate from UDP-N-acetylglucosamine to dolichol phosphate in the first step of glycoprotein synthesis. Tunicamycin blocks N-linked glycosylation (N-glycans) and treatment of cultured human cells with tunicamycin causes cell cycle arrest in G1 phase. It is used as an experimental tool in biology, e.g. to induce unfolded protein response. Tunicamycin is produced by several bacteria, including Streptomyces clavuligerus and Streptomyces lysosuperificus.
In enzymology, an UDP-glucosamine 4-epimerase is an enzyme that catalyzes the chemical reaction
In enzymology, an UDP-N-acetylglucosamine 2-epimerase is an enzyme that catalyzes the chemical reaction
In enzymology, an UDP-N-acetylglucosamine 4-epimerase is an enzyme that catalyzes the chemical reaction
In enzymology, a dolichyl-phosphate alpha-N-acetylglucosaminyltransferase is an enzyme that catalyzes the chemical reaction
In enzymology, a protein N-acetylglucosaminyltransferase is an enzyme that catalyzes the chemical reaction
In enzymology, an UDP-galactose—UDP-N-acetylglucosamine galactose phosphotransferase is an enzyme that catalyzes the chemical reaction
In enzymology, an UDP-N-acetylglucosamine diphosphorylase is an enzyme that catalyzes the chemical reaction
Inborn errors of carbohydrate metabolism are inborn error of metabolism that affect the catabolism and anabolism of carbohydrates.
(N-acetylneuraminyl)-galactosylglucosylceramide N-acetylgalactosaminyltransferase is an enzyme with systematic name UDP-N-acetyl-D-galactosamine:1-O-(O- - -O-beta-D-galactopyranosyl- -beta-D-glucopyranosyl)-ceramide 4-beta-N-acetyl-D-galactosaminyltransferase. This enzyme catalyses the following chemical reaction
Beta-1,3-galactosyl-O-glycosyl-glycoprotein beta-1,6-N-acetylglucosaminyltransferase is an enzyme with systematic name UDP-N-acetyl-D-glucosamine:O-glycosyl-glycoprotein 6-beta-N-acetyl-D-glucosaminyltransferase. This enzyme catalyses the following chemical reaction
Bis(trifluoromethyl)peroxide (BTP) is a fluorocarbon derivative first produced by Frédéric Swarts. It has recently been discovered that it is a good initiator for the polymerization of unsaturated ethylene-like molecules. It produces good quality polymers which are quite stable. This property is the reason an economical synthesis is sought for BTP. This chemical is unusual in the fact that unlike many peroxides, bis(trifluoromethyl)peroxide is a gas, is nonexplosive and has good thermal stability.
This article needs additional citations for verification .(March 2012) |