Hierarchical constraint satisfaction

Last updated

In artificial intelligence and operations research, hierarchical constraint satisfaction (HCS) is a method of handling constraint satisfaction problems where the variables have large domains by exploiting their internal structure. [1]

For many real-world problems the domain elements cluster together into sets with common properties and relations. This structure can be represented as a hierarchy and is partially ordered on the subset of a relation. The expectation is that the domains are structured so that the elements of a set frequently share consistency properties permitting them to be retained or eliminated as a unit. Thus, if some elements of a set satisfy a constraint, but not all, the subsets of the set are considered. In this way, if no elements of a set can satisfy the constraint the whole set can be discarded. Thus, structuring the domain helps in considering sets of elements all at a time and hence helps in pruning the search space more quickly. [2]

Related Research Articles

A hierarchy is an arrangement of items in which the items are represented as being "above", "below", or "at the same level as" one another. Hierarchy is an important concept in a wide variety of fields, such as philosophy, architecture, design, mathematics, computer science, organizational theory, systems theory, systematic biology, and the social sciences.

Logic programming is a programming paradigm which is largely based on formal logic. Any program written in a logic programming language is a set of sentences in logical form, expressing facts and rules about some problem domain. Major logic programming language families include Prolog, answer set programming (ASP) and Datalog. In all of these languages, rules are written in the form of clauses:

Mathematical logic, also called formal logic, is a subfield of mathematics exploring the applications of formal logic to mathematics. It bears close connections to metamathematics, the foundations of mathematics, philosophy, and theoretical computer science. The unifying themes in mathematical logic include the study of the expressive power of formal systems and the deductive power of formal proof systems.

In mathematics, more precisely in mathematical logic, model theory is the study of the relationship between formal theories, and their models, taken as interpretations that satisfy the sentences of that theory. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory. The relative emphasis placed on the class of models of a theory as opposed to the class of definable sets within a model fluctuated in the history of the subject, and the two directions are summarised by the pithy characterisations from 1973 and 1997 respectively:

Set theory Branch of mathematics that studies sets

Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole.

In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such as Russell's paradox. Today, Zermelo–Fraenkel set theory, with the historically controversial axiom of choice (AC) included, is the standard form of axiomatic set theory and as such is the most common foundation of mathematics. Zermelo–Fraenkel set theory with the axiom of choice included is abbreviated ZFC, where C stands for "choice", and ZF refers to the axioms of Zermelo–Fraenkel set theory with the axiom of choice excluded.

Constraint programming (CP) is a paradigm for solving combinatorial problems that draws on a wide range of techniques from artificial intelligence, computer science, and operations research. In constraint programming, users declaratively state the constraints on the feasible solutions for a set of decision variables. Constraints differ from the common primitives of imperative programming languages in that they do not specify a step or sequence of steps to execute, but rather the properties of a solution to be found. In addition to constraints, users also need to specify a method to solve these constraints. This typically draws upon standard methods like chronological backtracking and constraint propagation, but may use customized code like a problem specific branching heuristic.

Constraint satisfaction problems (CSPs) are mathematical questions defined as a set of objects whose state must satisfy a number of constraints or limitations. CSPs represent the entities in a problem as a homogeneous collection of finite constraints over variables, which is solved by constraint satisfaction methods. CSPs are the subject of research in both artificial intelligence and operations research, since the regularity in their formulation provides a common basis to analyze and solve problems of many seemingly unrelated families. CSPs often exhibit high complexity, requiring a combination of heuristics and combinatorial search methods to be solved in a reasonable time. Constraint Programming (CP) is the field of research that specifically focuses on tackling these kinds of problems. Additionally, boolean satisfiability problem (SAT), the satisfiability modulo theories (SMT), mixed integer programming (MIP) and answer set programming (ASP) are all fields of research focusing on the resolution of particular forms of the constraint satisfaction problem.

Zermelo set theory, as set out in an important paper in 1908 by Ernst Zermelo, is the ancestor of modern Zermelo-Fraenkel set theory (ZF) and its extensions, such as von Neumann–Bernays–Gödel set theory (NBG). It bears certain differences from its descendants, which are not always understood, and are frequently misquoted. This article sets out the original axioms, with the original text and original numbering.

In logic and mathematics second-order logic is an extension of first-order logic, which itself is an extension of propositional logic. Second-order logic is in turn extended by higher-order logic and type theory.

In artificial intelligence and operations research, constraint satisfaction is the process of finding a solution to a set of constraints that impose conditions that the variables must satisfy. A solution is therefore a set of values for the variables that satisfies all constraints—that is, a point in the feasible region.

The AC-3 algorithm is one of a series of algorithms used for the solution of constraint satisfaction problems. It was developed by Alan Mackworth in 1977. The earlier AC algorithms are often considered too inefficient, and many of the later ones are difficult to implement, and so AC-3 is the one most often taught and used in very simple constraint solvers.

In mathematics, given a collection of subsets of a set X, an exact cover is a subcollection of such that each element in is contained in exactly one subset in . One says that each element in is covered by exactly one subset in . An exact cover is a kind of cover.

In mathematical logic, a theory is a set of sentences in a formal language. In most scenarios, a deductive system is first understood from context, after which an element of a theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms.

In constraint satisfaction, local consistency conditions are properties of constraint satisfaction problems related to the consistency of subsets of variables or constraints. They can be used to reduce the search space and make the problem easier to solve. Various kinds of local consistency conditions are leveraged, including node consistency, arc consistency, and path consistency.

In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it.

Constraint logic programming is a form of constraint programming, in which logic programming is extended to include concepts from constraint satisfaction. A constraint logic program is a logic program that contains constraints in the body of clauses. An example of a clause including a constraint is A(X,Y):-X+Y>0,B(X),C(Y). In this clause, X+Y>0 is a constraint; A(X,Y), B(X), and C(Y) are literals as in regular logic programming. This clause states one condition under which the statement A(X,Y) holds: X+Y is greater than zero and both B(X) and C(Y) are true.

The complexity of constraint satisfaction is the application of computational complexity theory on constraint satisfaction. It has mainly been studied for discriminating between tractable and intractable classes of constraint satisfaction problems on finite domains.

Abductive logic programming (ALP) is a high-level knowledge-representation framework that can be used to solve problems declaratively based on abductive reasoning. It extends normal logic programming by allowing some predicates to be incompletely defined, declared as abducible predicates. Problem solving is effected by deriving hypotheses on these abducible predicates as solutions of problems to be solved. These problems can be either observations that need to be explained or goals to be achieved. It can be used to solve problems in diagnosis, planning, natural language and machine learning. It has also been used to interpret negation as failure as a form of abductive reasoning.

In mathematics, leximin order is a total preorder on finite-dimensional vectors. A more accurate, but less common term is leximin preorder. The leximin order is particularly important in social choice theory and fair division.

References

  1. Mackworth, Alan K.; Mulder, Jan A.; Havens, William S. (1985-01-01). "Hierarchical arc consistency: exploiting structured domains in constraint satisfaction problems". Computational Intelligence. 1 (1): 118–126. doi:10.1111/j.1467-8640.1985.tb00064.x. ISSN   1467-8640.
  2. Wilson, Molly; Borning, Alan (1993-07-01). "Hierarchical constraint logic programming". The Journal of Logic Programming. 16 (3–4): 277–318. doi: 10.1016/0743-1066(93)90046-J . ISSN   0743-1066.