Higher Speed PON

Last updated
Higher Speed PON
Higher Speed Passive Optical Networks
AbbreviationG.9804
StatusIn force
Year started2018
Latest version1.0
November 2019
Organization ITU-T
Base standards 10G-PON, NG-PON2
Domain Telecommunication
LicenseFreely available
Website https://www.itu.int/rec/T-REC-G.9804.1

Higher Speed PON (also known as G.9804, HSP) is a family of ITU-T recommendations (computer networking standards) for data links, capable of delivering shared Internet access rates up to 50 Gbit/s (gigabits per second, Gbps). [1] Higher Speed PON is the first PON system to use digital signal processing, succeeding both single-channel XGS-PON and multi-channel NG-PON2. [2] It provides upgrade paths for legacy PON generations such as GPON, XG-PON, XGS-PON, and 10G-EPON. [3]

Contents

Development

Following the publication of 40 Gbps NG-PON2 in July 2015, standardization activities turned to higher speed PON. [4] In November 2016, the Full Service Access Network (FSAN) Group released the Standards Roadmap 2.0 which indicated the development of "future optical access systems" with peak transmission rates above 10 Gbps. [5]

Concurrently, ITU-T Study Group 15 launched the G.sup.HSP project to study higher speed PON technologies, culminating in the publication of ITU-T G.sup.64 (G.sup.HSP) in February 2018. [6] [7] Among possible nominal line rates of 20, 25, 50, and 100 Gbps per wavelength, the January 2018 Study Group 15 Plenary Meeting selected 50 Gbps as the next generation after 10 Gbps to provide a sufficiently large increment to network capacity while remaining technically feasible for network operators. [6]

The G.9804 standard series was established and intended to consist of four main recommendations. Recommendations G.9804.1 and G.9804.2 apply to all HSP systems, whereas G.9804.3 concerns physical medium dependent layer specifications for 50 Gbps PON (50G-PON) systems only. [6] Another recommendation, G.hsp.TWDMPMD, is under study in conjunction with IEEE working group P802.3. [8]

Standards

G.9804.1

G.9804.1 (G.hsp.req): Higher speed passive optical networks - Requirements serves as a guide for the development of higher speed PON systems by providing examples of "services, user network interfaces, and service node interfaces" required for higher speed networks, [9] such as higher speed single channel (TDMA-PON), higher speed multichannel (TWDM-PON), and higher speed point-to-point overlay PONs. [6] It provides requirements for backwards compatibility with the G.9807.x series covering GPON, XG(S)-PON, and 10G-EPON systems. [3] The standard achieved consent in July 2019, [6] was approved in November 2019, and was amended in August 2021. [9]

G.9804.2

G.9804.2 (G.hsp.comTC): Higher speed passive optical networks - Common transmission convergence layer specification defines the frame format and media access control method for exchange between optical line terminals (OLTs) and optical network units (ONUs) in higher speed networks. It is intended to support a variety of physical medium dependent (PMD) sublayers in all high speed PON systems and be future-proof. [3] [10] [11] It was approved in September 2021. [12]

G.9804.3

G.9804.3 (G.hsp.50Gpmd): 50-Gigabit-capable passive optical networks (50G-PON) - Physical media dependent (PMD) layer specification sets standards for the PMD sublayer of a 50 Gbps single-channel PON system (50G-PON) for residential, business, and mobile backhaul applications. [13] It was approved in September 2021. [14]

Technical requirements

General technical requirements [6]
Nominal line rate combination
Symmetric per channel50 Gbps both downstream and upstream [lower-alpha 1]
Asymmetric50 Gbps down, 25 Gbps up
50 Gbps down, 12.5 Gbps up
Wavelength bands
Downstream1340~1344 nm
UpstreamWideband: 1260~1280 nm (GPON compatible)
Wideband: 1290~1310 nm (XG(S)-PON compatible)
Narrowband: 1298~1302 nm
Maximum fiber distance
General application20 km
Latency-sensitive (e.g. 5G)10 km
Power budget classes
Coexistence strategyClassRange (dB)
Multi-PON module (MPM)N11429
C+1732
Non-MPM [lower-alpha 2] N11429
N21631
E11833
E22035
  1. The upstream nominal line rate of 50 Gbps is left for further study. [13]
  2. Use cases using external coexistence elements (CEx) or direct optical distribution network (ODN) connection. [6]

Field trials

Related Research Articles

<span class="mw-page-title-main">Gigabit Ethernet</span> Standard for Ethernet networking at a data rate of 1 gigabit per second

In computer networking, Gigabit Ethernet is the term applied to transmitting Ethernet frames at a rate of a gigabit per second. The most popular variant, 1000BASE-T, is defined by the IEEE 802.3ab standard. It came into use in 1999, and has replaced Fast Ethernet in wired local networks due to its considerable speed improvement over Fast Ethernet, as well as its use of cables and equipment that are widely available, economical, and similar to previous standards. The first standard for faster 10 Gigabit Ethernet was approved in 2002.

In the seven-layer OSI model of computer networking, the physical layer or layer 1 is the first and lowest layer: the layer most closely associated with the physical connection between devices. The physical layer provides an electrical, mechanical, and procedural interface to the transmission medium. The shapes and properties of the electrical connectors, the frequencies to transmit on, the line code to use and similar low-level parameters, are specified by the physical layer.

<span class="mw-page-title-main">Passive optical network</span> Technology used to provide broadband to the end consumer via fiber

A passive optical network (PON) is a fiber-optic telecommunications technology for delivering broadband network access to end-customers. Its architecture implements a point-to-multipoint topology in which a single optical fiber serves multiple endpoints by using unpowered (passive) fiber optic splitters to divide the fiber bandwidth among the endpoints. Passive optical networks are often referred to as the last mile between an Internet service provider (ISP) and its customers. Many fiber ISPs prefer this technology.

Dynamic bandwidth allocation is a technique by which traffic bandwidth in a shared telecommunications medium can be allocated on demand and fairly between different users of that bandwidth. This is a form of bandwidth management, and is essentially the same thing as statistical multiplexing. Where the sharing of a link adapts in some way to the instantaneous traffic demands of the nodes connected to the link.

<span class="mw-page-title-main">Ethernet physical layer</span> Electrical or optical properties between network devices

The physical-layer specifications of the Ethernet family of computer network standards are published by the Institute of Electrical and Electronics Engineers (IEEE), which defines the electrical or optical properties and the transfer speed of the physical connection between a device and the network or between network devices. It is complemented by the MAC layer and the logical link layer. An implementation of a specific physical layer is commonly referred to as PHY.

Ethernet in the first mile (EFM) refers to using one of the Ethernet family of computer network technologies between a telecommunications company and a customer's premises. From the customer's point of view, it is their first mile, although from the access network's point of view it is known as the last mile.

40 Gigabit Ethernet (40GbE) and 100 Gigabit Ethernet (100GbE) are groups of computer networking technologies for transmitting Ethernet frames at rates of 40 and 100 gigabits per second (Gbit/s), respectively. These technologies offer significantly higher speeds than 10 Gigabit Ethernet. The technology was first defined by the IEEE 802.3ba-2010 standard and later by the 802.3bg-2011, 802.3bj-2014, 802.3bm-2015, and 802.3cd-2018 standards. The first succeeding Terabit Ethernet specifications were approved in 2017.

G.984 is the ITU-T standard for implementing a gigabit-capable passive optical network (GPON). It is commonly used to implement the outermost link to the customer of fibre-to-the-premises (FTTP) services.

Ethernet over Coax (EoC) is a family of technologies that supports the transmission of Ethernet frames over coaxial cable. The Institute of Electrical and Electronics Engineers (IEEE) maintains all official Ethernet standards in the IEEE 802 family.

The 10 Gbit/s Ethernet Passive Optical Network standard, better known as 10G-EPON allows computer network connections over telecommunication provider infrastructure. The standard supports two configurations: symmetric, operating at 10 Gbit/s data rate in both directions, and asymmetric, operating at 10 Gbit/s in the downstream direction and 1 Gbit/s in the upstream direction. It was ratified as IEEE 802.3av standard in 2009. EPON is a type of passive optical network, which is a point-to-multipoint network using passive fiber-optic splitters rather than powered devices for fan-out from hub to customers.

<span class="mw-page-title-main">10 Gigabit Ethernet</span> Standards for Ethernet at ten times the speed of Gigabit Ethernet

10 Gigabit Ethernet is a group of computer networking technologies for transmitting Ethernet frames at a rate of 10 gigabits per second. It was first defined by the IEEE 802.3ae-2002 standard. Unlike previous Ethernet standards, 10GbE defines only full-duplex point-to-point links which are generally connected by network switches; shared-medium CSMA/CD operation has not been carried over from the previous generations of Ethernet standards so half-duplex operation and repeater hubs do not exist in 10GbE. The first standard for faster 100 Gigabit Ethernet links was approved in 2010.

The C form-factor pluggable is a multi-source agreement to produce a common form-factor for the transmission of high-speed digital signals. The c stands for the Latin letter C used to express the number 100 (centum), since the standard was primarily developed for 100 Gigabit Ethernet systems.

The Service Interoperability in Ethernet Passive Optical Networks (SIEPON) working group proposed the IEEE 1904.1 standard for managing telecommunications networks.

Terabit Ethernet or TbE is Ethernet with speeds above 100 Gigabit Ethernet. 400 Gigabit Ethernet and 200 Gigabit Ethernet standards developed by the IEEE P802.3bs Task Force using broadly similar technology to 100 Gigabit Ethernet were approved on December 6, 2017. In 2016, several networking equipment suppliers were already offering proprietary solutions for 200G and 400G.

10G-PON is a 2010 computer networking standard for data links, capable of delivering shared Internet access rates up to 10 Gbit/s over existing dark fiber. This is the ITU-T's next generation standard following on from GPON or Gigabit-capable PON. Optical fibre is shared by many subscribers in a network known as FTTx in a way that centralises most of the telecommunications equipment, often displacing copper phone lines that connect premises to the phone exchange. Passive optical network (PON) architecture has become a cost-effective way to meet performance demands in access networks, and sometimes also in large optical local networks for "Fibre-to-the-desk".

<span class="mw-page-title-main">G.fast</span> ITU-T Recommendation

G.fast is a digital subscriber line (DSL) protocol standard for local loops shorter than 500 meters, with performance targets between 100 Mbit/s and 1 Gbit/s, depending on loop length. High speeds are only achieved over very short loops. Although G.fast was initially designed for loops shorter than 250 meters, Sckipio in early 2015 demonstrated G.fast delivering speeds over 100 Mbit/s at nearly 500 meters and the EU announced a research project.

25 Gigabit Ethernet and 50 Gigabit Ethernet are standards for Ethernet connectivity in a datacenter environment, developed by IEEE 802.3 task forces 802.3by and 802.3cd and are available from multiple vendors.

NG-PON2, Next-Generation Passive Optical Network 2 is a 2015 telecommunications network standard for a passive optical network (PON). The standard was developed by ITU and details an architecture capable of total network throughput of 40 Gbit/s, corresponding to up to 10 Gbit/s symmetric upstream/downstream speeds available at each subscriber.

<span class="mw-page-title-main">ITU-T Study Group 15</span> Standardization body focused on networks and infrastructures for transport, access and home

The ITU-T Study Group 15 (SG15) 'Transport' is a standardization committee of ITU-T concerned with networks, technologies and infrastructures for transport, access and home. It responsible for standards such as GPON, G.fast, etc.

References

  1. "New ITU standards to boost Fibre to the Home from 10G to 50G". MyITU. ITU News. 10 June 2021. Archived from the original on 2021-06-15. Retrieved 2021-06-15.
  2. Roberts, Hal (2020-03-01). "Status of ITU-T Q2/15: New Higher Speed PON Projects". IEEE Communications Standards Magazine. 4 (1): 57–59. doi:10.1109/MCOMSTD.001.1900038. ISSN   2471-2833. S2CID   218565328. Archived from the original on 2021-07-07.
  3. 1 2 3 ITU-T Study Group 15 (2021). "HSP: Higher Speed Passive Optical Networks" (PDF). International Telecommunication Union. Retrieved 2021-12-19.{{cite web}}: CS1 maint: numeric names: authors list (link)
  4. Koma, Ryo; Kani, Jun-ichi; Asaka, Kota; Suzuki, Ken-Ichi (10 October 2017). "Standardization Trends for Future High-speed Passive Optical Networks". NTT Technical Review. 15 (10): 60–64. doi: 10.53829/ntr201710gls . S2CID   264296980 . Retrieved 2021-12-25.
  5. "FSAN Roadmap". Full Service Access Network (FSAN) Group. Retrieved 2021-12-25.
  6. 1 2 3 4 5 6 7 Zhang, Dezhi; Liu, Dekun; Wu, Xuming; Nesset, Derek (2020-10-01). "Progress of ITU-T higher speed passive optical network (50G-PON) standardization". IEEE/OSA Journal of Optical Communications and Networking. 12 (10): D99–D108. doi:10.1364/JOCN.391830. ISSN   1943-0639. S2CID   220074848.
  7. "ITU-T work programme: G.sup.64 (ex G.sup.HSP)". ITU. 2019-11-04. Retrieved 2021-12-25.
  8. "ITU-T work programme: G.hsp.TWDMpmd". ITU. 2021-05-03. Retrieved 2021-12-25.
  9. 1 2 "G.9804.1: Higher speed passive optical networks - Requirements". International Telecommunication Union. Archived from the original on 2021-06-15. Retrieved 2021-06-15.
  10. Effenberger, Frank (8 June 2021). ITU INTERVIEWS: Frank J. Effenberger, Rapporteur, Question 2/15, ITU-T Study Group 15. ITU. Retrieved 2021-06-15.
  11. "ITU-T work programme: G.9804.2 (ex G.hsp.comTC)". ITU. 2021-05-03. Retrieved 2021-12-19.
  12. "G.9804.2 : Higher speed passive optical networks - Common transmission convergence layer specification". International Telecommunication Union. Retrieved 2021-12-19.
  13. 1 2 "ITU-T work programme: G.9804.3 (ex G.hsp.50Gpmd)". ITU. 2021-05-03. Retrieved 2021-12-23.
  14. "G.9804.3: 50-Gigabit-capable passive optical networks (50G-PON): Physical media dependent (PMD) layer specification". International Telecommunication Union. Retrieved 2021-12-19.
  15. Zhang, Dezhi; Liu, Dekun; Nesset, Derek; Wu, Xuming; Ming, Jiang (22 November 2021). "Carrier Lab Trial of a Real Time 50G-PON Prototype". 2021 European Conference on Optical Communication (ECOC). IEEE. pp. 1–4. doi:10.1109/ECOC52684.2021.9605843. ISBN   978-1-6654-3868-1. S2CID   244493949 . Retrieved 2021-12-25.
  16. Hüsler, Esther (8 October 2020). "50 Gbit/s on a fixed network connection – a world first!". Swisscom. Retrieved 2021-12-25.