The twenty-first problem of the 23 Hilbert problems, from the celebrated list put forth in 1900 by David Hilbert, concerns the existence of a certain class of linear differential equations with specified singular points and monodromic group.
The original problem was stated as follows (English translation from 1902):
In fact it is more appropriate to speak not about differential equations but about linear systems of differential equations: in order to realise any monodromy by a differential equation one has to admit, in general, the presence of additional apparent singularities, i.e. singularities with trivial local monodromy. In more modern language, the (systems of) differential equations in question are those defined in the complex plane, less a few points, and with a regular singularity at those. A more strict version of the problem requires these singularities to be Fuchsian, i.e. poles of first order (logarithmic poles), including at infinity. A monodromy group is prescribed, by means of a finite-dimensional complex representation of the fundamental group of the complement in the Riemann sphere of those points, plus the point at infinity, up to equivalence. The fundamental group is actually a free group, on 'circuits' going once round each missing point, starting and ending at a given base point. The question is whether the mapping from these Fuchsian equations to classes of representations is surjective.
This problem is more commonly called the Riemann–Hilbert problem . It led to several bijective correspondences known as ' Riemann–Hilbert correspondences', for flat algebraic connections with regular singularities and more generally regular holonomic D-modules or flat algebraic connections with regular singularities on principal G-bundles, in all dimensions. The history of proofs involving a single complex variable is complicated. Josip Plemelj published a solution in 1908. This work was for a long time accepted as a definitive solution; there was work of G. D. Birkhoff in 1913 also. Plemelj (1964) wrote a monograph summing up his work. A few years later the Soviet mathematician Yuliy S. Il'yashenko and others started raising doubts about Plemelj's work. In fact, Plemelj correctly proves that any monodromy group can be realised by a regular linear system which is Fuchsian at all but one of the singular points. Plemelj's claim that the system can be made Fuchsian at the last point as well is wrong, unless the monodromy is diagonalizable there. [1]
Indeed Andrey A.Bolibrukh ( 1990 ) found a counterexample to Plemelj's statement. This is commonly viewed as providing a counterexample to the precise question Hilbert had in mind; Bolibrukh showed that for a given pole configuration certain monodromy groups can be realised by regular, but not by Fuchsian systems. (In 1990 he published the thorough study of the case of regular systems of size 3 exhibiting all situations when such counterexamples exists. In 1978 Dekkers had shown that for systems of size 2 Plemelj's claim is true. Andrey A.Bolibrukh ( 1992 ) and independently VladimirKostov ( 1992 ) showed that for any size, an irreducible monodromy group can be realised by a Fuchsian system. The codimension of the variety of monodromy groups of regular systems of size with poles which cannot be realised by Fuchsian systems equals (VladimirKostov ( 1992 )).) Parallel to this the Grothendieck school of algebraic geometry had become interested in questions of 'integrable connections on algebraic varieties', generalising the theory of linear differential equations on Riemann surfaces. Pierre Deligne proved a precise Riemann–Hilbert correspondence in this general context (a major point being to say what 'Fuchsian' means). With work by Helmut Röhrl, the case in one complex dimension was again covered.
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis or Fermat's Last Theorem, have shaped much of mathematical history as new areas of mathematics are developed in order to prove them.
Josip Plemelj was a Slovene mathematician, whose main contributions were to the theory of analytic functions and the application of integral equations to potential theory. He was the first chancellor of the University of Ljubljana.
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the problems at the Paris conference of the International Congress of Mathematicians, speaking on August 8 at the Sorbonne. The complete list of 23 problems was published later, in English translation in 1902 by Mary Frances Winston Newson in the Bulletin of the American Mathematical Society. Earlier publications appeared in Archiv der Mathematik und Physik.
In mathematics, the Weil conjectures were highly influential proposals by André Weil. They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.
In mathematics, monodromy is the study of how objects from mathematical analysis, algebraic topology, algebraic geometry and differential geometry behave as they "run round" a singularity. As the name implies, the fundamental meaning of monodromy comes from "running round singly". It is closely associated with covering maps and their degeneration into ramification; the aspect giving rise to monodromy phenomena is that certain functions we may wish to define fail to be single-valued as we "run round" a path encircling a singularity. The failure of monodromy can be measured by defining a monodromy group: a group of transformations acting on the data that encodes what happens as we "run round" in one dimension. Lack of monodromy is sometimes called polydromy.
Pierre René, Viscount Deligne is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal.
In mathematics, geometric invariant theory is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper in classical invariant theory.
In mathematics, Painlevé transcendents are solutions to certain nonlinear second-order ordinary differential equations in the complex plane with the Painlevé property, but which are not generally solvable in terms of elementary functions. They were discovered by Émile Picard , Paul Painlevé , Richard Fuchs, and Bertrand Gambier.
Lazarus Immanuel Fuchs was a Jewish-German mathematician who contributed important research in the field of linear differential equations. He was born in Moschin (Mosina) and died in Berlin, Germany. He was buried in Schöneberg in the St. Matthew's Cemetery. His grave in section H is preserved and listed as a grave of honour of the State of Berlin.
In mathematics, in the theory of ordinary differential equations in the complex plane , the points of are classified into ordinary points, at which the equation's coefficients are analytic functions, and singular points, at which some coefficient has a singularity. Then amongst singular points, an important distinction is made between a regular singular point, where the growth of solutions is bounded by an algebraic function, and an irregular singular point, where the full solution set requires functions with higher growth rates. This distinction occurs, for example, between the hypergeometric equation, with three regular singular points, and the Bessel equation which is in a sense a limiting case, but where the analytic properties are substantially different.
In mathematics, an algebraic differential equation is a differential equation that can be expressed by means of differential algebra. There are several such notions, according to the concept of differential algebra used.
In mathematics, Riemann–Hilbert problems, named after Bernhard Riemann and David Hilbert, are a class of problems that arise in the study of differential equations in the complex plane. Several existence theorems for Riemann–Hilbert problems have been produced by Mark Krein, Israel Gohberg and others.
In mathematics, the term Riemann–Hilbert correspondence refers to the correspondence between regular singular flat connections on algebraic vector bundles and representations of the fundamental group, and more generally to one of several generalizations of this. The original setting appearing in Hilbert's twenty-first problem was for the Riemann sphere, where it was about the existence of systems of linear regular differential equations with prescribed monodromy representations. First the Riemann sphere may be replaced by an arbitrary Riemann surface and then, in higher dimensions, Riemann surfaces are replaced by complex manifolds of dimension > 1. There is a correspondence between certain systems of partial differential equations and possible monodromies of their solutions.
In mathematics, the equations governing the isomonodromic deformation of meromorphic linear systems of ordinary differential equations are, in a fairly precise sense, the most fundamental exact nonlinear differential equations. As a result, their solutions and properties lie at the heart of the field of exact nonlinearity and integrable systems.
Andrei Andreevich Bolibrukh was a Soviet and Russian mathematician. He was known for his work on ordinary differential equations especially Hilbert's twenty-first problem. Bolibrukh was the author of about a hundred research articles on theory of ordinary differential equations including Riemann–Hilbert problem and Fuchsian system.
In the mathematical theory of special functions, Schwarz's list or the Schwartz table is the list of 15 cases found by Hermann Schwarz when hypergeometric functions can be expressed algebraically. More precisely, it is a listing of parameters determining the cases in which the hypergeometric equation has a finite monodromy group, or equivalently has two independent solutions that are algebraic functions. It lists 15 cases, divided up by the isomorphism class of the monodromy group, and was first derived by Schwarz by methods of complex analytic geometry. Correspondingly the statement is not directly in terms of the parameters specifying the hypergeometric equation, but in terms of quantities used to describe certain spherical triangles.
Zoghman Mebkhout is a French-Algerian mathematician. He is known for his work in algebraic analysis, geometry and representation theory, more precisely on the theory of D-modules.
Alexander Nikolaevich Varchenko is a Soviet and Russian mathematician working in geometry, topology, combinatorics and mathematical physics.
Carlos Tschudi Simpson is an American mathematician, specializing in algebraic geometry.