Nick Katz

Last updated

Nick Katz
Nicholas Katz.jpg
Born
Nicholas Michael Katz

(1943-12-07) December 7, 1943 (age 79)
Alma mater Johns Hopkins University Princeton University
Known for Katz–Lang finiteness theorem
Ax–Katz theorem
Grothendieck–Katz p-curvature conjecture
Overconvergent modular form
p-adic modular form
Awards Sloan Fellowship (1970)
Guggenheim Fellowship (1975)
Levi L. Conant Prize (2003)
Leroy P. Steele Prize (2023)
Scientific career
Fields Mathematics
Institutions Princeton University
Doctoral advisor Bernard Dwork
Doctoral students William Messing
Neal Koblitz
Mark Kisin
Chris Hall
Will Sawin

Nicholas Michael Katz (born December 7, 1943) is an American mathematician, working in arithmetic geometry, particularly on p-adic methods, monodromy and moduli problems, and number theory. He is currently a professor of Mathematics at Princeton University and an editor of the journal Annals of Mathematics . [1]

Contents

Life and work

Katz graduated from Johns Hopkins University (BA 1964) and from Princeton University, where in 1965 he received his master's degree and in 1966 he received his doctorate under supervision of Bernard Dwork with thesis On the Differential Equations Satisfied by Period Matrices. After that, at Princeton, he was an instructor, an assistant professor in 1968, associate professor in 1971 and professor in 1974. From 2002 to 2005 he was the chairman of faculty there. He was also a visiting scholar at the University of Minnesota, the University of Kyoto, Paris VI, Orsay Faculty of Sciences, the Institute for Advanced Study and the IHES. While in France, he adapted methods of scheme theory and category theory to the theory of modular forms. Subsequently, he has applied geometric methods to various exponential sums.

From 1968 to 1969, he was a NATO Postdoctoral Fellow, from 1975 to 1976 and from 1987–1988 Guggenheim Fellow and from 1971 to 1972 Sloan Fellow. In 1970 he was an invited speaker at the International Congress of Mathematicians in Nice (The regularity theorem in algebraic geometry) and in 1978 in Helsinki (p-adic L functions, Serre-Tate local moduli and ratios of solutions of differential equations).

Since 2003 he is a member of the American Academy of Arts and Sciences and since 2004 the National Academy of Sciences. In 2003 he was awarded with Peter Sarnak the Levi L. Conant Prize of the American Mathematical Society (AMS) for the essay "Zeroes of Zeta Functions and Symmetry" in the Bulletin of the American Mathematical Society. Since 2004 he is an editor of the Annals of Mathematics. In 2023 he received from the AMS the Leroy P. Steele Prize for Lifetime Achievement. [2]

He played a significant role as a sounding-board for Andrew Wiles when Wiles was developing in secret his proof of Fermat's Last Theorem. Mathematician and cryptographer Neal Koblitz was one of Katz's students.

Katz studied, with Sarnak among others, the connection of the eigenvalue distribution of large random matrices of classical groups to the distribution of the distances of the zeros of various L and zeta functions in algebraic geometry. He also studied trigonometric sums (Gauss sums) with algebro-geometric methods.

He introduced the Katz–Lang finiteness theorem.

Writings

Related Research Articles

<span class="mw-page-title-main">Faltings's theorem</span> Curves of genus > 1 over the rationals have only finitely many rational points

Faltings's theorem is a result in arithmetic geometry, according to which a curve of genus greater than 1 over the field of rational numbers has only finitely many rational points. This was conjectured in 1922 by Louis Mordell, and known as the Mordell conjecture until its 1983 proof by Gerd Faltings. The conjecture was later generalized by replacing by any number field.

In mathematics, the Weil conjectures were highly influential proposals by André Weil (1949). They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.

<span class="mw-page-title-main">Solomon Lefschetz</span> American mathematician

Solomon Lefschetz was a Russian-born American mathematician who did fundamental work on algebraic topology, its applications to algebraic geometry, and the theory of non-linear ordinary differential equations.

<span class="mw-page-title-main">Pierre Deligne</span> Belgian mathematician

Pierre René, Viscount Deligne is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal.

In mathematics, Diophantine geometry is the study of Diophantine equations by means of powerful methods in algebraic geometry. By the 20th century it became clear for some mathematicians that methods of algebraic geometry are ideal tools to study these equations. Diophantine geometry is part of the broader field of arithmetic geometry.

In mathematics, the Sato–Tate conjecture is a statistical statement about the family of elliptic curves Ep obtained from an elliptic curve E over the rational numbers by reduction modulo almost all prime numbers p. Mikio Sato and John Tate independently posed the conjecture around 1960.

Donald Clayton Spencer was an American mathematician, known for work on deformation theory of structures arising in differential geometry, and on several complex variables from the point of view of partial differential equations. He was born in Boulder, Colorado, and educated at the University of Colorado and MIT.

<span class="mw-page-title-main">Jean Bourgain</span> Belgian mathematician

Jean Louis, baron Bourgain was a Belgian mathematician. He was awarded the Fields Medal in 1994 in recognition of his work on several core topics of mathematical analysis such as the geometry of Banach spaces, harmonic analysis, ergodic theory and nonlinear partial differential equations from mathematical physics.

<span class="mw-page-title-main">Arithmetic geometry</span> Branch of algebraic geometry focused on problems in number theory

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

<span class="mw-page-title-main">Tate conjecture</span>

In number theory and algebraic geometry, the Tate conjecture is a 1963 conjecture of John Tate that would describe the algebraic cycles on a variety in terms of a more computable invariant, the Galois representation on étale cohomology. The conjecture is a central problem in the theory of algebraic cycles. It can be considered an arithmetic analog of the Hodge conjecture.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algebraic varieties to the real numbers.

In mathematics, Arakelov theory is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.

Arithmetic dynamics is a field that amalgamates two areas of mathematics, dynamical systems and number theory. Part of the inspiration comes from complex dynamics, the study of the iteration of self-maps of the complex plane or other complex algebraic varieties. Arithmetic dynamics is the study of the number-theoretic properties of integer, rational, p-adic, or algebraic points under repeated application of a polynomial or rational function. A fundamental goal is to describe arithmetic properties in terms of underlying geometric structures.

In mathematics, a p-adic zeta function, or more generally a p-adic L-function, is a function analogous to the Riemann zeta function, or more general L-functions, but whose domain and target are p-adic. For example, the domain could be the p-adic integersZp, a profinite p-group, or a p-adic family of Galois representations, and the image could be the p-adic numbersQp or its algebraic closure.

<span class="mw-page-title-main">Pierre Colmez</span> French mathematician

Pierre Colmez is a French mathematician, notable for his work on p-adic analysis.

The Levi L. Conant Prize is a mathematics prize of the American Mathematical Society, which has been awarded since 2001 for outstanding expository papers published in the Bulletin of the American Mathematical Society or the Notices of the American Mathematical Society in the past five years. The award is worth $1,000 and is awarded annually.

<span class="mw-page-title-main">Umberto Zannier</span> Italian mathematician

Umberto Zannier is an Italian mathematician, specializing in number theory and Diophantine geometry.

<span class="mw-page-title-main">Andrew Sutherland (mathematician)</span>

Andrew Victor Sutherland is an American mathematician and Principal Research Scientist at the Massachusetts Institute of Technology. His research focuses on computational aspects of number theory and arithmetic geometry. He is known for his contributions to several projects involving large scale computations, including the Polymath project on bounded gaps between primes, the L-functions and Modular Forms Database, the sums of three cubes project, and the computation and classification of Sato-Tate distributions.

References