Bernard Dwork

Last updated • 1 min readFrom Wikipedia, The Free Encyclopedia
Bernard Dwork
Born(1923-05-27)May 27, 1923
New York City, US
DiedMay 9, 1998(1998-05-09) (aged 74)
Alma mater Columbia University
Known for Dwork conjecture
Dwork family
Dwork's lemma
Dwork's method
Awards Guggenheim Fellowship (1964)
Cole Prize (1962)
ICM Speaker (1962)
Scientific career
Fields Mathematics
Institutions Johns Hopkins University
Princeton University
Doctoral advisor Emil Artin
John Tate
Doctoral students Stefan Burr
Nick Katz

Bernard Morris Dwork (May 27, 1923 – May 9, 1998) was an American mathematician, known for his application of p-adic analysis to local zeta functions, and in particular for a proof of the first part of the Weil conjectures: the rationality of the zeta function of a variety over a finite field. The general theme of Dwork's research was p-adic cohomology and p-adic differential equations. He published two papers under the pseudonym Maurizio Boyarsky.

Contents

Career

Dwork studied electrical engineering at the City College of New York and Brooklyn Polytechnic Institute. [1] He served in the Pacific theater of World War II. [1]

He received his Ph.D. at Columbia University in 1954 under direction of Emil Artin (his formal advisor was John Tate); Nick Katz was one of his students. [2] [3]

He spent 3 years at Harvard University and 7 years at Johns Hopkins University before joining Princeton University as a faculty member in 1964. [1] He became Eugene Higgins Professor of Mathematics in 1978 and became emeritus in 1993. [1] He was named a Professore di Chiara Fama by the Italian government and held a special chair at the University of Padua from 1992 onwards. [1]

Awards and honors

For his proof of the first part of the Weil conjectures, Dwork received (together with Kenkichi Iwasawa) the Cole Prize in 1962. [2] He received a Guggenheim Fellowship in 1964. [2]

Personal life

Dwork was married to Shirley Dwork and is the father of computer scientist Cynthia Dwork, historian Deborah Dwork, and Andrew Dwork. [1]

See also

Related Research Articles

<span class="mw-page-title-main">André Weil</span> French mathematician (1906–1998)

André Weil was a French mathematician, known for his foundational work in number theory and algebraic geometry. He was one of the most influential mathematicians of the twentieth century. His influence is due both to his original contributions to a remarkably broad spectrum of mathematical theories, and to the mark he left on mathematical practice and style, through some of his own works as well as through the Bourbaki group, of which he was one of the principal founders.

<span class="mw-page-title-main">Alexander Grothendieck</span> French mathematician (1928–2014)

Alexander Grothendieck, later Alexandre Grothendieck in French, was a German-born French mathematician who became the leading figure in the creation of modern algebraic geometry. His research extended the scope of the field and added elements of commutative algebra, homological algebra, sheaf theory, and category theory to its foundations, while his so-called "relative" perspective led to revolutionary advances in many areas of pure mathematics. He is considered by many to be the greatest mathematician of the twentieth century.

<span class="mw-page-title-main">Jean-Pierre Serre</span> French mathematician

Jean-Pierre Serre is a French mathematician who has made contributions to algebraic topology, algebraic geometry and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the inaugural Abel Prize in 2003.

In mathematics, the Weil conjectures were highly influential proposals by André Weil. They led to a successful multi-decade program to prove them, in which many leading researchers developed the framework of modern algebraic geometry and number theory.

<span class="mw-page-title-main">John Tate (mathematician)</span> American mathematician (1925–2019)

John Torrence Tate Jr. was an American mathematician distinguished for many fundamental contributions in algebraic number theory, arithmetic geometry, and related areas in algebraic geometry. He was awarded the Abel Prize in 2010.

<span class="mw-page-title-main">Pierre Deligne</span> Belgian mathematician

Pierre René, Viscount Deligne is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal.

In mathematics, the étale cohomology groups of an algebraic variety or scheme are algebraic analogues of the usual cohomology groups with finite coefficients of a topological space, introduced by Grothendieck in order to prove the Weil conjectures. Étale cohomology theory can be used to construct ℓ-adic cohomology, which is an example of a Weil cohomology theory in algebraic geometry. This has many applications, such as the proof of the Weil conjectures and the construction of representations of finite groups of Lie type.

<span class="mw-page-title-main">Richard Taylor (mathematician)</span> British mathematician

Richard Lawrence Taylor is a British mathematician working in the field of number theory. He is currently the Barbara Kimball Browning Professor in Humanities and Sciences at Stanford University.

In mathematics, an Euler system is a collection of compatible elements of Galois cohomology groups indexed by fields. They were introduced by Kolyvagin in his work on Heegner points on modular elliptic curves, which was motivated by his earlier paper Kolyvagin (1988) and the work of Thaine (1988). Euler systems are named after Leonhard Euler because the factors relating different elements of an Euler system resemble the Euler factors of an Euler product.

<span class="mw-page-title-main">Nick Katz</span> American mathematician

Nicholas Michael Katz is an American mathematician, working in arithmetic geometry, particularly on p-adic methods, monodromy and moduli problems, and number theory. He is currently a professor of Mathematics at Princeton University and an editor of the journal Annals of Mathematics.

<span class="mw-page-title-main">Arithmetic geometry</span> Branch of algebraic geometry focused on problems in number theory

In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties.

This is a glossary of arithmetic and diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

In mathematics, crystalline cohomology is a Weil cohomology theory for schemes X over a base field k. Its values Hn(X/W) are modules over the ring W of Witt vectors over k. It was introduced by Alexander Grothendieck (1966, 1968) and developed by Pierre Berthelot (1974).

In mathematics, the main conjecture of Iwasawa theory is a deep relationship between p-adic L-functions and ideal class groups of cyclotomic fields, proved by Kenkichi Iwasawa for primes satisfying the Kummer–Vandiver conjecture and proved for all primes by Mazur and Wiles. The Herbrand–Ribet theorem and the Gras conjecture are both easy consequences of the main conjecture. There are several generalizations of the main conjecture, to totally real fields, CM fields, elliptic curves, and so on.

Daqing Wan is a Chinese mathematician working in the United States. He received his Ph.D. from the University of Washington in Seattle in 1991, under the direction of Neal Koblitz. Since 1997, he has been on the faculty of mathematics at the University of California at Irvine; he has also held visiting positions at the Institute for Advanced Study in Princeton, New Jersey, Pennsylvania State University, the University of Rennes, the Mathematical Sciences Research Institute in Berkeley, California, and the Chinese Academy of Sciences in Beijing.

<span class="mw-page-title-main">Pierre Colmez</span> French mathematician

Pierre Colmez is a French mathematician and directeur de recherche at the CNRS (IMJ-PRG) known for his work in number theory and p-adic analysis.

<span class="mw-page-title-main">Christopher Deninger</span> German mathematician (born 1958)

Christopher Deninger is a German mathematician at the University of Münster. Deninger's research focuses on arithmetic geometry, including applications to L-functions.

In mathematics, class field theory is the study of abelian extensions of local and global fields.

In mathematics, the Dwork unit root zeta function, named after Bernard Dwork, is the L-function attached to the p-adic Galois representation arising from the p-adic etale cohomology of an algebraic variety defined over a global function field of characteristic p. The Dwork conjecture (1973) states that his unit root zeta function is p-adic meromorphic everywhere. This conjecture was proved by Wan (2000).

Basic Number Theory is an influential book by André Weil, an exposition of algebraic number theory and class field theory with particular emphasis on valuation-theoretic methods. Based in part on a course taught at Princeton University in 1961–62, it appeared as Volume 144 in Springer's Grundlehren der mathematischen Wissenschaften series. The approach handles all 'A-fields' or global fields, meaning finite algebraic extensions of the field of rational numbers and of the field of rational functions of one variable with a finite field of constants. The theory is developed in a uniform way, starting with topological fields, properties of Haar measure on locally compact fields, the main theorems of adelic and idelic number theory, and class field theory via the theory of simple algebras over local and global fields. The word `basic’ in the title is closer in meaning to `foundational’ rather than `elementary’, and is perhaps best interpreted as meaning that the material developed is foundational for the development of the theories of automorphic forms, representation theory of algebraic groups, and more advanced topics in algebraic number theory. The style is austere, with a narrow concentration on a logically coherent development of the theory required, and essentially no examples.

References

  1. 1 2 3 4 5 6 "Bernard Dwork Obituary". Princeton University . Princeton Weekly Bulletin. May 25, 1998. Retrieved October 25, 2023.
  2. 1 2 3 Memorial article – by Nick Katz and John Tate.
  3. Bernard Dwork at the Mathematics Genealogy Project.