In mathematics, a Hofstadter sequence is a member of a family of related integer sequences defined by non-linear recurrence relations.
The first Hofstadter sequences were described by Douglas Richard Hofstadter in his book Gödel, Escher, Bach . In order of their presentation in chapter III on figures and background (Figure-Figure sequence) and chapter V on recursive structures and processes (remaining sequences), these sequences are:
The Hofstadter Figure-Figure (R and S) sequences are a pair of complementary integer sequences defined as follows: [1] [2]
with the sequence defined as a strictly increasing series of positive integers not present in . The first few terms of these sequences are
The Hofstadter G sequence is defined as follows: [3] [4]
The first few terms of this sequence are
The Hofstadter H sequence is defined as follows: [3] [5]
The first few terms of this sequence are
The Hofstadter Female (F) and Male (M) sequences are defined as follows: [3] [6]
The first few terms of these sequences are
The Hofstadter Q sequence is defined as follows: [3] [7]
The first few terms of the sequence are
Hofstadter named the terms of the sequence "Q numbers"; [3] thus the Q number of 6 is 4. The presentation of the Q sequence in Hofstadter's book is actually the first known mention of a meta-Fibonacci sequence in literature. [8]
While the terms of the Fibonacci sequence are determined by summing the two preceding terms, the two preceding terms of a Q number determine how far to go back in the Q sequence to find the two terms to be summed. The indices of the summation terms thus depend on the Q sequence itself.
Q(1), the first element of the sequence, is never one of the two terms being added to produce a later element; it is involved only within an index in the calculation of Q(3). [9]
Although the terms of the Q sequence seem to flow chaotically, [3] [10] [11] [12] like many meta-Fibonacci sequences, its terms can be grouped into blocks of successive generations. [13] [14] In case of the Q sequence, the k-th generation has 2k members. [15] Furthermore, with g being the generation that a Q number belongs to, the two terms to be summed to calculate the Q number, called its parents, reside by far mostly in generation g − 1 and only a few in generation g − 2, but never in an even older generation. [16]
Most of these findings are empirical observations, since virtually nothing has been proved about the Q sequence so far. [17] [18] [19] It is specifically unknown whether the sequence is well-defined for all n; that is, iwhetherf the sequence "dies" at some point because its generation rule tries to refer to terms which would conceptually sit left of the first term Q(1). [12] [17] [19]
20 years after Hofstadter first described the Q sequence, he and Greg Huber used the character Q to name the generalization of the Q sequence toward a family of sequences, and renamed the original Q sequence of his book to U sequence. [19]
The original Q sequence is generalized by replacing n − 1 and n − 2 by n − r and n − s, respectively. [19]
This leads to the sequence family
where s ≥ 2 and r < s.
With (r,s) = (1,2), the original Q sequence is a member of this family. So far, only three sequences of the family Qr,s are known, namely the U sequence with (r,s) = (1,2) (which is the original Q sequence); [19] the V sequence with (r,s) = (1,4); [20] and the W sequence with (r,s) = (2,4). [19] Only the V sequence, which does not behave as chaotically as the others, is proven not to "die". [19] Similar to the original Q sequence, virtually nothing has been proved rigorously about the W sequence to date. [19]
The first few terms of the V sequence are
The first few terms of the W sequence are
For other values (r,s) the sequences sooner or later "die" i.e. there exists an n for which Qr,s(n) is undefined because n − Qr,s(n − r) < 1. [19]
In 1998, Klaus Pinn, scientist at University of Münster (Germany) and in close communication with Hofstadter, suggested another generalization of Hofstadter's Q sequence which Pinn called F sequences. [21]
The family of Pinn Fi,j sequences is defined as follows:
Thus Pinn introduced additional constants i and j which shift the index of the terms of the summation conceptually to the left (that is, closer to start of the sequence). [21]
Only F sequences with (i,j) = (0,0), (0,1), (1,0), and (1,1), the first of which represents the original Q sequence, appear to be well-defined. [21] Unlike Q(1), the first elements of the Pinn Fi,j(n) sequences are terms of summations in calculating later elements of the sequences when any of the additional constants is 1.
The first few terms of the Pinn F0,1 sequence are
The Hofstadter–Conway $10,000 sequence is defined as follows [22]
The first few terms of this sequence are
The values converge to 1/2, and this sequence acquired its name because John Horton Conway offered a prize of $10,000 to anyone who could determine its rate of convergence. The prize, since reduced to $1,000, was claimed by Collin Mallows, who proved that [23] [24] In private communication with Klaus Pinn, Hofstadter later claimed that he had found the sequence and its structure about 10–15 years before Conway posed his challenge. [10]
In elementary algebra, the binomial theorem describes the algebraic expansion of powers of a binomial. According to the theorem, the power expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying and the coefficient of each term is a specific positive integer depending on and . For example, for ,
In mathematics, the Bernoulli numbersBn are a sequence of rational numbers which occur frequently in analysis. The Bernoulli numbers appear in the Taylor series expansions of the tangent and hyperbolic tangent functions, in Faulhaber's formula for the sum of m-th powers of the first n positive integers, in the Euler–Maclaurin formula, and in expressions for certain values of the Riemann zeta function.
In mathematics, the gamma function is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a convergent improper integral for complex numbers with positive real part:
Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
In mathematics, the Farey sequence of order n is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size.
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as the divisor function, it counts the number of divisors of an integer. It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important congruences and identities; these are treated separately in the article Ramanujan's sum.
In mathematics, an aliquot sequence is a sequence of positive integers in which each term is the sum of the proper divisors of the previous term. If the sequence reaches the number 1, it ends, since the sum of the proper divisors of 1 is 0.
In number theory, a formula for primes is a formula generating the prime numbers, exactly and without exception. Formulas for calculating primes do exist; however, they are computationally very slow. A number of constraints are known, showing what such a "formula" can and cannot be.
In number theory, a Wagstaff prime is a prime number of the form
In mathematics, the plastic ratio is a geometrical proportion close to 53/40. Its true value is the real solution of the equation x3 = x + 1.
The Engel expansion of a positive real number x is the unique non-decreasing sequence of positive integers such that
In mathematics, a Padé approximant is the "best" approximation of a function near a specific point by a rational function of given order. Under this technique, the approximant's power series agrees with the power series of the function it is approximating. The technique was developed around 1890 by Henri Padé, but goes back to Georg Frobenius, who introduced the idea and investigated the features of rational approximations of power series.
In mathematics, a mock modular form is the holomorphic part of a harmonic weak Maass form, and a mock theta function is essentially a mock modular form of weight 1/2. The first examples of mock theta functions were described by Srinivasa Ramanujan in his last 1920 letter to G. H. Hardy and in his lost notebook. Sander Zwegers discovered that adding certain non-holomorphic functions to them turns them into harmonic weak Maass forms.
In mathematics, the Fibonacci numbers form a sequence defined recursively by:
The Eckart conditions, named after Carl Eckart, simplify the nuclear motion (rovibrational) Hamiltonian that arises in the second step of the Born–Oppenheimer approximation. They make it possible to approximately separate rotation from vibration. Although the rotational and vibrational motions of the nuclei in a molecule cannot be fully separated, the Eckart conditions minimize the coupling close to a reference configuration. The Eckart conditions are explained by Louck and Galbraith.
In mathematics, an elliptic divisibility sequence (EDS) is a sequence of integers satisfying a nonlinear recursion relation arising from division polynomials on elliptic curves. EDS were first defined, and their arithmetic properties studied, by Morgan Ward in the 1940s. They attracted only sporadic attention until around 2000, when EDS were taken up as a class of nonlinear recurrences that are more amenable to analysis than most such sequences. This tractability is due primarily to the close connection between EDS and elliptic curves. In addition to the intrinsic interest that EDS have within number theory, EDS have applications to other areas of mathematics including logic and cryptography.
In mathematics, a Ramanujan–Sato series generalizes Ramanujan’s pi formulas such as,
A mathematical constant is a number whose value is fixed by an unambiguous definition, often referred to by a special symbol, or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and π occurring in such diverse contexts as geometry, number theory, statistics, and calculus.
In number theory, the sum of squares function is an arithmetic function that gives the number of representations for a given positive integer n as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the numbers being squared are counted as different. It is denoted by rk(n).
In mathematics, a transformation of a sequence's generating function provides a method of converting the generating function for one sequence into a generating function enumerating another. These transformations typically involve integral formulas applied to a sequence generating function or weighted sums over the higher-order derivatives of these functions.