Holddown

Last updated

Holddown works by having each router start a timer when they first receive information about a network that is unreachable. Until the timer expires, the router will discard any subsequent route messages that indicate the route is in fact reachable. It can solve the case where multiple routers are connected indirectly. There are realistic scenarios where split horizon and split horizon with poisoned reverse can do nothing. [1]

In other words, a holddown keeps a router from receiving route updates until the network appears to be stable—until either an interface stops changing state (flapping) or a better route is learned.

Router (computing) Device that forwards data packets between computer networks, creating an overlay internetwork

A router is a networking device that forwards data packets between computer networks. Routers perform the traffic directing functions on the Internet. Data sent through the internet, such as a web page or email, is in the form of data packets. A packet is typically forwarded from one router to another router through the networks that constitute an internetwork until it reaches its destination node.

Holddowns are usually implemented with timers. If the router detects that a network is unreachable, the timer is started. The router will then wait a preset number of seconds until the network is stable. When the timer expires, the router will then receive its routing updates from other routers. For example, in RIP the default holddown timer is set to 180 seconds.

Timer device that automatically times a process or event or activates an operation or another device at a preset time or times

A timer is a specialized type of clock used for measuring specific time intervals. Timers can be categorized into two main types. A timer which counts upwards from zero for measuring elapsed time is often called a stopwatch, while a device which counts down from a specified time interval is more usually called a timer. A simple example of this type is an hourglass. Working method timers have two main groups: Hardware and Software timers.

The Routing Information Protocol ('RIP') is one of the oldest distance-vector routing protocols which employ the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support.

Related Research Articles

The Internet Control Message Protocol (ICMP) is a supporting protocol in the Internet protocol suite. It is used by network devices, including routers, to send error messages and operational information indicating, for example, that a requested service is not available or that a host or router could not be reached. ICMP differs from transport protocols such as TCP and UDP in that it is not typically used to exchange data between systems, nor is it regularly employed by end-user network applications.

The Transmission Control Protocol (TCP) is one of the main protocols of the Internet protocol suite. It originated in the initial network implementation in which it complemented the Internet Protocol (IP). Therefore, the entire suite is commonly referred to as TCP/IP. TCP provides reliable, ordered, and error-checked delivery of a stream of octets (bytes) between applications running on hosts communicating via an IP network. Major internet applications such as the World Wide Web, email, remote administration, and file transfer rely on TCP. Applications that do not require reliable data stream service may use the User Datagram Protocol (UDP), which provides a connectionless datagram service that emphasizes reduced latency over reliability.

In computing, traceroute and tracert are computer network diagnostic commands for displaying the route (path) and measuring transit delays of packets across an Internet Protocol (IP) network. The history of the route is recorded as the round-trip times of the packets received from each successive host in the route (path); the sum of the mean times in each hop is a measure of the total time spent to establish the connection. Traceroute proceeds unless all (three) sent packets are lost more than twice; then the connection is lost and the route cannot be evaluated. Ping, on the other hand, only computes the final round-trip times from the destination point.

Border Gateway Protocol (BGP) is a standardized exterior gateway protocol designed to exchange routing and reachability information among autonomous systems (AS) on the Internet. The protocol is classified as a path vector protocol. The Border Gateway Protocol makes routing decisions based on paths, network policies, or rule-sets configured by a network administrator and is involved in making core routing decisions.

Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS). It is defined as OSPF Version 2 in RFC 2328 (1998) for IPv4. The updates for IPv6 are specified as OSPF Version 3 in RFC 5340 (2008). OSPF supports the Classless Inter-Domain Routing (CIDR) addressing model.

A distance-vector routing protocol in data networks determines the best route for data packets based on distance. Distance-vector routing protocols measure the distance by the number of routers a packet has to pass, one router counts as one hop. Some distance-vector protocols also take into account network latency and other factors that influence traffic on a given route. To determine the best route across a network routers, on which a distance-vector protocol is implemented, exchange information with one another, usually routing tables plus hop counts for destination networks and possibly other traffic information. Distance-vector routing protocols also require that a router informs its neighbours of network topology changes periodically.

In computer networking, split-horizon route advertisement is a method of preventing routing loops in distance-vector routing protocols by prohibiting a router from advertising a route back onto the interface from which it was learned.

The Internet Group Management Protocol (IGMP) is a communications protocol used by hosts and adjacent routers on IPv4 networks to establish multicast group memberships. IGMP is an integral part of IP multicast.

Dial on Demand Routing (DDR) is a routing technique where a network connection to a remote site is established only when needed. In other words, if the router tries to send out data and the connection is off, then the router will automatically establish a connection, send the information, and close the connection when no more data needs to be sent. DDR is advantageous for companies that must pay per minute for a WAN setup, where a connection is always established. Constant connections can become needlessly expensive if the company does not require a constant internet connection.

Route poisoning is a method to prevent a router from sending packets through a route that has become invalid within computer networks. Distance-vector routing protocols in computer networks use route poisoning to indicate to other routers that a route is no longer reachable and should not be considered from their routing tables. Unlike the split horizon with poison reverse, route poisoning provides for sending updates with unreachable hop counts immediately to all the nodes in the network.

MOS Technology CIA

The 6526/8520 Complex Interface Adapter (CIA) was an integrated circuit made by MOS Technology. It served as an I/O port controller for the 6502 family of microprocessors, providing for parallel and serial I/O capabilities as well as timers and a Time-of-Day (TOD) clock. The device's most prominent use was in the Commodore 64 and Commodore 128(D), each of which included two CIA chips. The Commodore 1570 and Commodore 1571 floppy disk drives contained one CIA each. Furthermore, the Amiga home computers and the Commodore 1581 floppy disk drive employed a modified variant of the CIA circuit called 8520. 8520 is functionally equivalent to the 6526 except for the simplified TOD circuitry.

Path MTU Discovery (PMTUD) is a standardized technique in computer networking for determining the maximum transmission unit (MTU) size on the network path between two Internet Protocol (IP) hosts, usually with the goal of avoiding IP fragmentation. PMTUD was originally intended for routers in Internet Protocol Version 4 (IPv4). However, all modern operating systems use it on endpoints. In IPv6, this function has been explicitly delegated to the end points of a communications session.

Token ring technology for computer networking

Token Ring local area network (LAN) technology is a communications protocol for local area networks. It uses a special three-byte frame called a "token" that travels around a logical "ring" of workstations or servers. This token passing is a channel access method providing fair access for all stations, and eliminating the collisions of contention-based access methods.

A routing loop is a common problem with various types of networks, particularly computer networks. They are formed when an error occurs in the operation of the routing algorithm, and as a result, in a group of nodes, the path to a particular destination forms a loop.

Multi-link trunking

Multi-link trunking (MLT) is a link aggregation port trunking technology developed at Nortel in 1999. It allows grouping several physical Ethernet links into one logical Ethernet link to provide fault-tolerance and high-speed links between routers, switches, and servers. US patent 6731599, Van Hunter, Joseph Regan, Alfred Nothaft, Akhil Duggal; Regan, Joseph & Nothaft, Alfred et al., "Automatic Load Sharing-Trunking", issued 2004-05-04, assigned to Nortel Networks Limited and Avaya Holdings Limited

Extremely Opportunistic Routing (ExOR) is a combination of routing protocol and media access control for a wireless ad hoc network, invented by Sanjit Biswas and Robert Morris of the MIT Artificial Intelligence Laboratory, and described in a 2005 paper. A very similar opportunistic routing scheme was also independently proposed by Zhenzhen Ye and Yingbo Hua from University of California, Riverside and presented in a paper in 2005. Previously open source, ExOR was available in 2005 but is no longer obtainable. The broadcast and retransmission strategies used by the algorithm were already described in the literature. ExOR is valuable because it can operate available digital radios to use some previously impractical algorithmic optimizations.

In computer networking, split-horizon DNS, split-view DNS, split-brain DNS, or split DNS is the facility of a Domain Name System (DNS) implementation to provide different sets of DNS information, usually selected by the source address of the DNS request.

Convergence is the state of a set of routers that have the same topological information about the internetwork in which they operate. For a set of routers to have converged, they must have collected all available topology information from each other via the implemented routing protocol, the information they gathered must not contradict any other router's topology information in the set, and it must reflect the real state of the network. In other words: In a converged network all routers "agree" on what the network topology looks like.

An interior gateway protocol (IGP) is a type of protocol used for exchanging routing information between gateways within an autonomous system. This routing information can then be used to route network-layer protocols like IP.

References

  1. "RIP Special Features For Resolving RIP Algorithm Problems". The TCP/IP Guide. 2005-09-20. Retrieved 2012-01-09.