Hole accumulation diode

Last updated

A Hole accumulation diode (HAD) is an electronic noise reduction device in a charge-coupled device (CCD) or CMOS imaging sensor, [1] patented by the Sony Corporation. [2] HAD devices function by reducing dark current that occur in the absence of light falling on the imager for noise reduction and enhanced image quality.

HAD CCDs are used in consumer and professional single and three-chip video cameras.

Operation

The "hole" refers to places in a semiconductor where an electron has been dislodged, thus creating a positive charge. These "holes" or positive charges can be created by heat or imperfections in the creation of the imaging chip. The "holes" are accumulated, or trapped, in a separate semiconductor layer that acts as a diode that prevents them from returning or creating noise. HAD technology suppresses the fixed pattern noise that results from "dark" current that occurs regardless of the amount of absorbed light. By fabricating a hole-accumulation layer below the surface of the CCD, "dark" current can be suppressed at the source.

Related Research Articles

<span class="mw-page-title-main">Charge-coupled device</span> Device for the movement of electrical charge

A charge-coupled device (CCD) is an integrated circuit containing an array of linked, or coupled, capacitors. Under the control of an external circuit, each capacitor can transfer its electric charge to a neighboring capacitor. CCD sensors are a major technology used in digital imaging.

<span class="mw-page-title-main">MOSFET</span> Type of field-effect transistor

The metal-oxide-semiconductor field-effect transistor is a type of field-effect transistor (FET), most commonly fabricated by the controlled oxidation of silicon. It has an insulated gate, the voltage of which determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. A metal-insulator-semiconductor field-effect transistor (MISFET) is a term almost synonymous with MOSFET. Another synonym is IGFET for insulated-gate field-effect transistor.

<span class="mw-page-title-main">Photodiode</span> Converts light into current

A photodiode is a light-sensitive semiconductor diode. It produces current when it absorbs photons.

<span class="mw-page-title-main">CMOS</span> Technology for constructing integrated circuits

Complementary metal–oxide–semiconductor is a type of metal–oxide–semiconductor field-effect transistor (MOSFET) fabrication process that uses complementary and symmetrical pairs of p-type and n-type MOSFETs for logic functions. CMOS technology is used for constructing integrated circuit (IC) chips, including microprocessors, microcontrollers, memory chips, and other digital logic circuits. CMOS technology is also used for analog circuits such as image sensors, data converters, RF circuits, and highly integrated transceivers for many types of communication.

LBCAST is a type of photo sensor which the manufacturer claims is simpler and thus smaller and faster than CMOS sensors. It was developed over ten years by Nikon, in parallel with other manufacturer's development of CMOS, and resulted in shipping product in 2003.

A digital image is an image composed of picture elements, also known as pixels, each with finite, discrete quantities of numeric representation for its intensity or gray level that is an output from its two-dimensional functions fed as input by its spatial coordinates denoted with x, y on the x-axis and y-axis, respectively. Depending on whether the image resolution is fixed, it may be of vector or raster type. By itself, the term "digital image" usually refers to raster images or bitmapped images.

<span class="mw-page-title-main">Single-photon avalanche diode</span> Solid-state photodetector

A single-photon avalanche diode (SPAD) is a solid-state photodetector within the same family as photodiodes and avalanche photodiodes (APDs), while also being fundamentally linked with basic diode behaviours. As with photodiodes and APDs, a SPAD is based around a semi-conductor p-n junction that can be illuminated with ionizing radiation such as gamma, x-rays, beta and alpha particles along with a wide portion of the electromagnetic spectrum from ultraviolet (UV) through the visible wavelengths and into the infrared (IR).

In computer engineering, a logic family is one of two related concepts:

<span class="mw-page-title-main">Photodetector</span> Sensors of light or other electromagnetic energy

Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There are a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by various performance metrics, such as spectral response. Semiconductor-based photodetectors typically use a p–n junction that converts photons into charge. The absorbed photons make electron–hole pairs in the depletion region. Photodiodes and photo transistors are a few examples of photo detectors. Solar cells convert some of the light energy absorbed into electrical energy.

<span class="mw-page-title-main">Image sensor</span> Device that converts images into electronic signals

An image sensor or imager is a sensor that detects and conveys information used to form an image. It does so by converting the variable attenuation of light waves into signals, small bursts of current that convey the information. The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices, medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others. As technology changes, electronic and digital imaging tends to replace chemical and analog imaging.

<span class="mw-page-title-main">Active-pixel sensor</span> Image sensor, consisting of an integrated circuit

An active-pixel sensor (APS) is an image sensor, which was invented by Peter J.W. Noble in 1968, where each pixel sensor unit cell has a photodetector and one or more active transistors. In a metal–oxide–semiconductor (MOS) active-pixel sensor, MOS field-effect transistors (MOSFETs) are used as amplifiers. There are different types of APS, including the early NMOS APS and the now much more common complementary MOS (CMOS) APS, also known as the CMOS sensor. CMOS sensors are used in digital camera technologies such as cell phone cameras, web cameras, most modern digital pocket cameras, most digital single-lens reflex cameras (DSLRs), mirrorless interchangeable-lens cameras (MILCs), and lensless imaging for cells.

<span class="mw-page-title-main">Color filter array</span>

In digital imaging, a color filter array (CFA), or color filter mosaic (CFM), is a mosaic of tiny color filters placed over the pixel sensors of an image sensor to capture color information.

<span class="mw-page-title-main">Image sensor format</span> Shape and size of a digital cameras image sensor

In digital photography, the image sensor format is the shape and size of the image sensor.

<span class="mw-page-title-main">Exmor</span> Digital camera technology

Exmor is technology Sony implemented on some of their CMOS image sensors. It performs on-chip analog/digital signal conversion and two-step noise reduction in parallel on each column of the CMOS sensor.

BIONZ is a line of image processors used in Sony digital cameras.

In physics and in electronic engineering, dark current is the relatively small electric current that flows through photosensitive devices such as a photomultiplier tube, photodiode, or charge-coupled device even when no photons enter the device; it consists of the charges generated in the detector when no outside radiation is entering the detector. It is referred to as reverse bias leakage current in non-optical devices and is present in all diodes. Physically, dark current is due to the random generation of electrons and holes within the depletion region of the device.

<span class="mw-page-title-main">Paul Suni</span>

Paul Suni is a Silicon Valley technologist, engineer, semiconductor device physicist and independent researcher. Since 1984, he has contributed to advancements in semiconductor electronics, photonics, digital imaging sensors and medical devices. In 2007, he dedicated himself to research concerning the scientific and philosophical foundations of technology and wellbeing.

<span class="mw-page-title-main">Back-illuminated sensor</span>

A back-illuminated sensor, also known as backside illumination (BI) sensor, is a type of digital image sensor that uses a novel arrangement of the imaging elements to increase the amount of light captured and thereby improve low-light performance.

<span class="mw-page-title-main">Field-effect transistor</span> Type of transistor

The field-effect transistor (FET) is a type of transistor that uses an electric field to control the flow of current in a semiconductor. It comes in two types: junction-gate FET (JFET) and metal-oxide-semiconductor FET (MOSFET). FETs have three terminals: source, gate, and drain. FETs control the flow of current by the application of a voltage to the gate, which in turn alters the conductivity between the drain and source.

<span class="mw-page-title-main">Detectors for transmission electron microscopy</span>

There are a variety of technologies available for detecting and recording the images, diffraction patterns, and electron energy loss spectra produced using transmission electron microscopy (TEM).

References

  1. Yonemoto, K.; Sumi, H. (2000). "A CMOS image sensor with a simple fixed-pattern-noise-reduction technology and a hole accumulation diode". IEEE Journal of Solid-State Circuits. 35 (12): 2038–2043. Bibcode:2000IJSSC..35.2038Y. doi:10.1109/4.890320. ISSN   0018-9200. S2CID   21187209.
  2. "Sony Develops Noise Reduction Technologies to Enhance Image Quality of CMOS Image Sensors". Sony Global. February 8, 2000. Retrieved 2012-12-08. Press Release