Hole drilling method

Last updated

The hole drilling method is a method for measuring residual stresses, [1] [2] in a material. Residual stress occurs in a material in the absence of external loads. Residual stress interacts with the applied loading on the material to affect the overall strength, fatigue, and corrosion performance of the material. Residual stresses are measured through experiments. The hole drilling method is one of the most used methods for residual stress measurement. [3]

Contents

The hole drilling method can measure macroscopic residual stresses near the material surface. The principle is based on drilling of a small hole into the material. When the material containing residual stress is removed the remaining material reaches a new equilibrium state. The new equilibrium state has associated deformations around the drilled hole. The deformations are related to the residual stress in the volume of material that was removed through drilling. The deformations around the hole are measured during the experiment using strain gauges or optical methods. The original residual stress in the material is calculated from the measured deformations. The hole drilling method is popular for its simplicity and it is suitable for a wide range of applications and materials.

Key advantages of the hole drilling method include rapid preparation, versatility of the technique for different materials, and reliability. Conversely, the hole drilling method is limited in depth of analysis and specimen geometry, and is at least semi-destructive.

Hole drilling method for measuring residual stresses - detail of the end mill in the measuring device. Fig 03 EN wiki hole drilling method.jpg
Hole drilling method for measuring residual stresses – detail of the end mill in the measuring device.

History and development

The idea of measuring the residual stress by drilling a hole and registering the change of the hole diameter was first proposed by Mathar in 1934. In 1966 Rendler and Vignis introduced a systematic and repeatable procedure of hole drilling to measure the residual stress. In the following period the method was further developed in terms of drilling techniques, measuring the relieved deformations, and the residual stress evaluation itself. A very important milestone is the use of finite element method to compute the calibration coefficients and to evaluate the residual stresses from the measured relieved deformations (Schajer, 1981). That allowed especially the evaluation of residual stresses which are not constant along the depth. It also brought further possibilities of using the method, e.g., for inhomogeneous materials, coatings, etc. The measurement and evaluation procedure is standardised by the norm ASTM E837 [4] of the American Society for Testing and Materials which also contributed to the popularity of the method. The hole drilling is currently one of the most widespread methods of measuring the residual stress. Modern computational methods are used for the evaluation. The method is being developed especially in terms of drilling techniques and the possibilities of measuring the deformations.

Fundamental principles

The hole drilling method of measuring the residual stresses is based on drilling a small hole in the material surface. This relieves the residual stresses and the associated deformations around the hole. The relieved deformations are measured in at least three independent directions around the hole. The original residual stress in the material is then evaluated based on the measured deformations and using the so-called calibration coefficients. The hole is made by a cylindrical end mill or by alternative techniques. Deformations are most often measured using strain gauges (strain gauge rosettes).

Principle of the hole drilling method for residual stress measurement. Fig 04 EN wiki hole drilling method.png
Principle of the hole drilling method for residual stress measurement.

The biaxial stress in the surface plane can be measured. The method is often referred to as semi-destructive thanks to the small material damage. The method is relatively simple, fast, the measuring device is usually portable. Disadvantages include the destructive character of the technique, limited resolution, and a lower accuracy of the evaluation in the case of nonuniform stresses or inhomogeneous material properties.

The so-called calibration coefficients play an important role in the residual stress evaluation. They are used to convert the relieved deformations to the original residual stress in the material. The coefficients can be theoretically derived for a through hole and a homogeneous stress. Then they depend only on the material properties, hole radius, and the distance from the hole. In the vast majority of practical applications, however, the preconditions for using the theoretically derived coefficients are not met, e.g., the integral deformation over the tensometer area is not included, the hole is blind instead of through, etc. Therefore, coefficients taking into account the practical aspects of measuring are used. They are mostly determined by a numerical computation using the finite element method. They express the relation between the relieved deformations and the residual stresses, taking into account the hole size, hole depth, shape of the tensometric rosette, material, and other parameters.

FEM mesh for computation of the calibration coefficients for the hole drilling residual stress measurement method. Fig 05 EN wiki hole drilling method.jpg
FEM mesh for computation of the calibration coefficients for the hole drilling residual stress measurement method.

The evaluation of the residual stresses depends on the method used to calculate them from the measured relieved deformations. All the evaluation methods are built on the basic principles. They differ in the preconditions for use, the accuracy requirements on the calibration coefficients, or the possibility to take additional influences into account. In general, the hole is made in successive steps and the relieved deformations are measured after each step.

Evaluation methods for the residual stress

Several methods have been developed for the evaluation of residual stresses from the relieved deformations. The fundamental method is the equivalent uniform stress method. The coefficients for particular hole diameter, rosette type, and hole depth are published in the norm ASTM E837. [4] The method is suitable for a constant or little changing stress along the depth. It can be used as a guideline for non-constant stresses, however, the method may give highly distorted results.

The most general method is the integral method. It calculates the influence of the relieved stress in the given depth which, however, changes with the total depth of the hole. The calibration coefficients are expressed as matrices. The evaluation leads to a system of equations whose solution is a vector of residual stresses in particular depths. A numerical simulation is required to get the calibration coefficients. The integral method and its coefficients are defined in the norm ASTM E837. [4]

Residual stress evaluation scheme by the Integral method. Shape of the calibration coefficients depending on the hole depth and the position in the hole. Fig 07 EN wiki hole drilling method.png
Residual stress evaluation scheme by the Integral method. Shape of the calibration coefficients depending on the hole depth and the position in the hole.

There are other evaluation methods that have lower demands on the calibration coefficients and on the evaluation process itself. These include the average stress method and the incremental strain method. Both the methods are based on the assumption that the change in deformation is caused solely by the relieved stress on the drilled increment. They are suitable only if there are small changes in the stress profiles. Both the methods give numerically correct results for uniform stresses.

The power series method and the spline method are other modifications of the integral method. They both take into account both the distance of the stress effect from the surface and the total hole depth. Contrary to the integral method, the resulting stress values are approximated by a polynomial or a spline. The power series method is very stable but it cannot capture rapidly changing stress values. The spline method is more stable and less susceptible to errors than the integral method. It can capture the actual stress values better than the power series method. The main disadvantage are the complicated mathematical calculations needed to solve a system of nonlinear equations.

Using the hole drilling method

The hole drilling method finds its use in many industrial areas dealing with material production and processing. The most important technologies include heat treatment, mechanical and thermal surface finishing, machining, welding, coating, or manufacturing composites. Despite its relative universality, the method requires these fundamental preconditions to be met: the possibility to drill the material, the possibility to apply the tensometric rosettes (or other means of measuring the deformations), and the knowledge of the material properties. Additional conditions can affect the accuracy and repeatability of the measuring. These include especially the size and shape of the sample, distance of the measured area from the edges, homogeneity of the material, presence of residual stress gradients, etc. Hole drilling can be performed in the laboratory or as a field measurement, making it ideal for measuring actual stresses in large components that cannot be moved.

See also

Related Research Articles

Pressure measurement Analysis of force applied by a fluid on a surface

Pressure measurement is the analysis of an applied force by a fluid on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure in an integral unit are called pressure meters or pressure gauges or vacuum gauges. A manometer is a good example, as it uses the surface area and weight of a column of liquid to both measure and indicate pressure. Likewise the widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.

Strain gauge

A strain gauge is a device used to measure strain on an object. Invented by Edward E. Simmons and Arthur C. Ruge in 1938, the most common type of strain gauge consists of an insulating flexible backing which supports a metallic foil pattern. The gauge is attached to the object by a suitable adhesive, such as cyanoacrylate. As the object is deformed, the foil is deformed, causing its electrical resistance to change. This resistance change, usually measured using a Wheatstone bridge, is related to the strain by the quantity known as the gauge factor.

Resistance thermometers, also called resistance temperature detectors (RTDs), are sensors used to measure temperature. Many RTD elements consist of a length of fine wire wrapped around a ceramic or glass core but other constructions are also used. The RTD wire is a pure material, typically platinum, nickel, or copper. The material has an accurate resistance/temperature relationship which is used to provide an indication of temperature. As RTD elements are fragile, they are often housed in protective probes.

Residual stress

Residual stresses are stresses that remain in a solid material after the original cause of the stresses has been removed. Residual stress may be desirable or undesirable. For example, laser peening imparts deep beneficial compressive residual stresses into metal components such as turbine engine fan blades, and it is used in toughened glass to allow for large, thin, crack- and scratch-resistant glass displays on smartphones. However, unintended residual stress in a designed structure may cause it to fail prematurely.

load cell is a force transducer. It converts a force such as tension, compression, pressure, or torque into an electrical signal that can be measured and standardized. As the force applied to the load cell increases, the electrical signal changes proportionally. The most common types of load cell used are hydraulic, pneumatic, and strain gauge.

Rheometer

A rheometer is a laboratory device used to measure the way in which a liquid, suspension or slurry flows in response to applied forces. It is used for those fluids which cannot be defined by a single value of viscosity and therefore require more parameters to be set and measured than is the case for a viscometer. It measures the rheology of the fluid.

Fracture toughness

In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.

Geotechnical investigation

Geotechnical investigations are performed by geotechnical engineers or engineering geologists to obtain information on the physical properties of soil earthworks and foundations for proposed structures and for repair of distress to earthworks and structures caused by subsurface conditions. This type of investigation is called a site investigation. Additionally, geotechnical investigations are also used to measure the thermal resistivity of soils or backfill materials required for underground transmission lines, oil and gas pipelines, radioactive waste disposal, and solar thermal storage facilities. A geotechnical investigation will include surface exploration and subsurface exploration of a site. Sometimes, geophysical methods are used to obtain data about sites. Subsurface exploration usually involves soil sampling and laboratory tests of the soil samples retrieved.

Triaxial shear test

A triaxial shear test is a common method to measure the mechanical properties of many deformable solids, especially soil and rock, and other granular materials or powders. There are several variations on the test.

Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature.

The original depth recorded while drilling an oil or gas well is known as the driller's depth.

ENGIN-X is the dedicated materials engineering beamline at the ISIS Neutron and Muon Source in the UK.

Electrical conductivity meter Sensor device

An electrical conductivity meter measures the electrical conductivity in a solution. It has multiple applications in research and engineering, with common usage in hydroponics, aquaculture, aquaponics, and freshwater systems to monitor the amount of nutrients, salts or impurities in the water.

Tensile testing Test procedure to determine mechanical properties of a specimen.

Tensile testing, also known as tension testing, is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials.

Crack tip opening displacement (CTOD) or is the distance between the opposite faces of a crack tip at the 90° intercept position. The position behind the crack tip at which the distance is measured is arbitrary but commonly used is the point where two 45° lines, starting at the crack tip, intersect the crack faces. The parameter is used in fracture mechanics to characterize the loading on a crack and can be related to other crack tip loading parameters such as the stress intensity factor and the elastic-plastic J-integral.

Deep hole drilling (DHD) is a residual stress measurement technique used to measure locked-in and applied stresses in engineering materials and components. DHD is a semi-destructive mechanical strain relaxation (MSR) technique, which seeks to measure the distribution of stresses along the axis of a drilled reference hole. The process is unique in its ability to measure residual stresses at a microscopic level with a penetration of over 750 millimetres (30 in), without total destruction of the original component. DHD is considered deep in comparison to other hole drilling techniques such as centre hole drilling.

Active thermography is an advanced nondestructive testing procedure, which uses a thermography measurement of a tested material thermal response after its external excitation. This principle can be used also for non-contact infrared non-destructive testing (IRNDT) of materials. The IRNDT method is based on an excitation of a tested material by an external source, which brings some energy to the material. Halogen lamps, flash-lamps, ultrasonic horn or other sources can be used as the excitation source for the IRNDT. The excitation causes a tested material thermal response, which is measured by an infrared camera. It is possible to obtain information about the tested material surface and sub-surface defects or material inhomogeneities by using a suitable combination of excitation source, excitation procedure, infrared camera and evaluation method.

Thermal Integrity Profiling is a non-destructive testing method of evaluating the integrity of concrete foundations. It is standardized by ASTM D7949 - Standard Test Methods for Thermal Integrity Profiling of Concrete Deep Foundations.

Michael A. Sutton is an American Engineering professor. He is Carolina Distinguished Professor and Distinguished Professor Emeritus of Mechanical Engineering at the University of South Carolina-Columbia. He served as Chairperson of Mechanical Engineering and Chair of the University Tenure and Promotion Committee.

References

  1. "Měření zbytkových napětí | Thermomechanics of technological processes". ttp.zcu.cz. Retrieved 2019-04-05.
  2. "Residual stress measurement by rosette hole drilling per ASTM E 837". G2MT Laboratories. 2017-04-05. Retrieved 2019-04-05.
  3. "Měření zbytkových napětí | Thermomechanics of technological processes". ttp.zcu.cz. Retrieved 2019-04-05.
  4. 1 2 3 [ASTM E 837: Standard Test Method for Determining Residual Stress by the Hole Drilling Strain-Gauge Method, ASTM Standard, American Society for Testing and Materials]