Holographic interferometry

Last updated

Holographic interferometry (HI) [1] [2] is a technique which enables static and dynamic displacements of objects with optically rough surfaces to be measured to optical interferometric precision (i.e. to fractions of a wavelength of light). These measurements can be applied to stress, strain and vibration analysis, as well as to non-destructive testing and radiation dosimetry. [3] It can also be used to detect optical path length variations in transparent media, which enables, for example, fluid flow to be visualised and analyzed. It can also be used to generate contours representing the form of the surface.

Contents

Holography is the two-step process of recording a diffracted light field scattered from an object, and performing image rendering. This process can be achieved with traditional photographic plates or with a digital sensor array, in digital holography. If the recorded field is superimposed on the "live field" scattered from the object, the two fields will be identical. If, however, a small deformation is applied to the object, the relative phases of the two light fields will alter, and it is possible to observe interference. This technique is known as live holographic interferometry.

It is also possible to obtain fringes by making two recordings of the light field scattered from the object on the same recording medium. The reconstructed light fields may then interfere to give fringes which map out the displacement of the surface. This is known as "frozen fringe" holography.

The form of the fringe pattern is related to the changes in surface position or air compaction.

Many methods of analysing such patterns automatically have been developed in recent years.

Discovery

Several research groups published papers in 1965 describing holographic interferometry. [1] [4] [5] [6] While the first observations of phenomena that could be ascribed to holographic interferometry were made by Juris Upatnieks in 1963 [7] the essential feature of the process was not understood until the work of Powell and Stetson. [1] Their experiments were conducted over the period of October to December 1964, and they began with an investigation of the periodic coherence length of the HeNe laser being used. The compact laser beam was used to illuminate a spot on a small object was placed between two mirrors such that its image could be observed looking over one mirror into the tunnel of multiple reflections between the mirrors. Each image was 10 cm greater in path length than the one before it. Because these lasers had about three longitudinal modes, their coherence length was periodic, as described by the manufacturer, Spectra Physics in cooperation with the Perkin Elmer Corporation. This was demonstrated by recording a hologram of the view over one of the mirrors.

In one of the holograms, however, a dark band was observed in the closest image to the hologram, and it was observed to shift position with perspective. This band was not observable in the original laser beam and had to be something created by the holographic process. The confocal laser cavity consisted of a spherical mirror at the output end with a flat mirror at the center of curvature at the other end. Adjustment of the longitudinal spacing controlled the number of off-axis modes of oscillation, and it was observed that the laser was oscillating in more than one axis mode. The multiple laser modes were incoherent and did not interfere in the observable laser beam, so why did they interfere in the hologram reconstruction? Stetson put forth the idea that each mode existed in both the object and in the reference beam, and each pair recorded a separate hologram in the photographic plate. When these were reconstructed, both recordings reconstructed simultaneously from the same laser beam and the fields were then mutually coherent. Powell objected to this idea, because it implied that the hologram had the power to coherently reconstruct fields that were incoherent during its recording.

The resulting arguments gave rise to a set of experiments that were later published in 1966. [8] These consisted of: (1) Recording the reflection of a concentrated laser beam while capturing the entire reference beam on the hologram and adjusting the laser for combinations of off-axis modes. (2) Recording double-exposure holograms of an object where the object, the reference beam mirror, and the hologram itself were rotated slightly between exposures. (3) Recording holograms of the bottom of a 35 mm film can while it was vibrating. Later, in April 1965, Stetson and Powell obtained real-time interference patterns between a real object and its holographic reconstruction. [9]

Applications

Laser vibrometry

Since its introduction, vibrometry by holographic interferometry has become commonplace. Powell and Stetson have shown that the fringes of the time-averaged hologram of a vibrating object correspond to the zeros of the Bessel function , where is the modulation depth of the phase modulation of the optical field at on the object. [1] With this method, the local vibration amplitude can be assessed by fringe counting. In the work reported by Aleksoff, [10] the reference beam was shifted in frequency to select one sideband of order . In that case, the fringes for sideband correspond to the zeros of the Bessel function . By sequential imaging of frequency sidebands, the issue of fringe counting has been alleviated. [11] The side band order is a marker of the local amplitude of sinusoidal out-of-plane motion. Multiplexed measurements of optical sidebands [12] [13] enable quantitative measurements of out-of-plane vibration amplitudes much smaller than the optical wavelength.

Laser Doppler imaging

In off-axis configuration, with a slow camera and a laser diode, holographic interferometry is sensitive enough to enable wide-field, laser Doppler imaging of optical fluctuations in amplitude and phase, either with a slow or a fast camera. A slow (e.g. video rate) camera will record time-averaged holographic interferograms which will result in lowpass filtering of the optical fluctuation signal. By shifting the frequency of the reference beam, the lowpass filter becomes a bandpass filter centered at the detuning frequency, and selective narrowband detection and imaging can be performed. This method permits microvascular blood flow imaging, [14] and wide-field measurement of photoplethysmograms by detection of out-of-plane tissue motion. [15] The wide temporal bandwidth of a high throughput camera can enable wideband detection and analysis of optical fluctuations. It can be used for pulsatile blood flow imaging. [16] [17]

See also

Related Research Articles

<span class="mw-page-title-main">Holography</span> Recording to reproduce a three-dimensional light field

Holography is a technique that enables a wavefront to be recorded and later reconstructed. It is best known as a method of generating real three-dimensional images, but also has a wide range of other applications. In principle, it is possible to make a hologram for any type of wave.

<span class="mw-page-title-main">Interferometry</span> Measurement method using interference of waves

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

In physics, coherence expresses the potential for two waves to interfere. Two monochromatic beams from a single source always interfere. Physical sources are not strictly monochromatic: they may be partly coherent. Beams from different sources are mutually incoherent.

<span class="mw-page-title-main">Mach–Zehnder interferometer</span> Device to determine relative phase shift

The Mach–Zehnder interferometer is a device used to determine the relative phase shift variations between two collimated beams derived by splitting light from a single source. The interferometer has been used, among other things, to measure phase shifts between the two beams caused by a sample or a change in length of one of the paths. The apparatus is named after the physicists Ludwig Mach and Ludwig Zehnder; Zehnder's proposal in an 1891 article was refined by Mach in an 1892 article. Demonstrations of Mach–Zehnder interferometry with particles other than photons had been demonstrated as well in multiple experiments.

Electron holography is holography with electron matter waves. Dennis Gabor invented holography in 1948 when he tried to improve image resolution in electron microscope. The first attempts to perform holography with electron waves were made by Haine and Mulvey in 1952; they recorded holograms of zinc oxide crystals with 60 keV electrons, demonstrating reconstructions with approximately 1 nm resolution. In 1955, G. Möllenstedt and H. Düker invented an electron biprism, thus enabling the recording of electron holograms in off-axis scheme. There are many different possible configurations for electron holography, with more than 20 documented in 1992 by Cowley. Usually, high spatial and temporal coherence of the electron beam are required to perform holographic measurements.

Digital holography refers to the acquisition and processing of holograms with a digital sensor array, typically a CCD camera or a similar device. Image rendering, or reconstruction of object data is performed numerically from digitized interferograms. Digital holography offers a means of measuring optical phase data and typically delivers three-dimensional surface or optical thickness images. Several recording and processing schemes have been developed to assess optical wave characteristics such as amplitude, phase, and polarization state, which make digital holography a very powerful method for metrology applications .

Phased-array optics is the technology of controlling the phase and amplitude of light waves transmitting, reflecting, or captured (received) by a two-dimensional surface using adjustable surface elements. An optical phased array (OPA) is the optical analog of a radio-wave phased array. By dynamically controlling the optical properties of a surface on a microscopic scale, it is possible to steer the direction of light beams, or the view direction of sensors, without any moving parts. Phased-array beam steering is used for optical switching and multiplexing in optoelectronic devices and for aiming laser beams on a macroscopic scale.

Computer-generated holography (CGH) is the method of digitally generating holographic interference patterns. A holographic image can be generated e.g., by digitally computing a holographic interference pattern and printing it onto a mask or film for subsequent illumination by suitable coherent light source.

Interferometric microscopy or imaging interferometric microscopy is the concept of microscopy which is related to holography, synthetic-aperture imaging, and off-axis-dark-field illumination techniques. Interferometric microscopy allows enhancement of resolution of optical microscopy due to interferometric (holographic) registration of several partial images and the numerical combining.

<span class="mw-page-title-main">Electronic speckle pattern interferometry</span>

Electronic speckle pattern interferometry (ESPI), also known as TV holography, is a technique that uses laser light, together with video detection, recording and processing, to visualise static and dynamic displacements of components with optically rough surfaces. The visualisation is in the form of fringes on the image, where each fringe normally represents a displacement of half a wavelength of the light used.

<span class="mw-page-title-main">Digital holographic microscopy</span>

Digital holographic microscopy (DHM) is digital holography applied to microscopy. Digital holographic microscopy distinguishes itself from other microscopy methods by not recording the projected image of the object. Instead, the light wave front information originating from the object is digitally recorded as a hologram, from which a computer calculates the object image by using a numerical reconstruction algorithm. The image forming lens in traditional microscopy is thus replaced by a computer algorithm. Other closely related microscopy methods to digital holographic microscopy are interferometric microscopy, optical coherence tomography and diffraction phase microscopy. Common to all methods is the use of a reference wave front to obtain amplitude (intensity) and phase information. The information is recorded on a digital image sensor or by a photodetector from which an image of the object is created (reconstructed) by a computer. In traditional microscopy, which do not use a reference wave front, only intensity information is recorded and essential information about the object is lost.

Specular holography is a technique for making three dimensional imagery by controlling the motion of specular glints on a two-dimensional surface. The image is made of many specularities and has the appearance of a 3D surface-stippling made of dots of light. Unlike conventional wavefront holograms, specular holograms do not depend on wave optics, photographic media, or lasers.

<span class="mw-page-title-main">Yves Gentet</span> French engineer and artist (born 1965)

Yves Gentet is a French engineer and artist, known for the invention of a creative method of holograms in colour Ultimate and a 3D holographic printer Chimera.

Self-mixing or back-injection laser interferometry is an interferometric technique in which a part of the light reflected by a vibrating target is reflected into the laser cavity, causing a modulation both in amplitude and in frequency of the emitted optical beam. In this way, the laser becomes sensitive to the distance traveled by the reflected beam thus becoming a distance, speed or vibration sensor. The advantage compared to a traditional measurement system is a lower cost thanks to the absence of collimation optics and external photodiodes.

A common-path interferometer is a class of interferometers in which the reference beam and sample beams travel along the same path. Examples include the Sagnac interferometer, Zernike phase-contrast interferometer, and the point diffraction interferometer. A common-path interferometer is generally more robust to environmental vibrations than a "double-path interferometer" such as the Michelson interferometer or the Mach–Zehnder interferometer. Although travelling along the same path, the reference and sample beams may travel along opposite directions, or they may travel along the same direction but with the same or different polarization.

<span class="mw-page-title-main">White light interferometry</span> Measurement technique

As described here, white light interferometry is a non-contact optical method for surface height measurement on 3D structures with surface profiles varying between tens of nanometers and a few centimeters. It is often used as an alternative name for coherence scanning interferometry in the context of areal surface topography instrumentation that relies on spectrally-broadband, visible-wavelength light.

Holographic interference microscopy (HIM) is holographic interferometry applied for microscopy for visualization of phase micro-objects. Phase micro-objects are invisible because they do not change intensity of light, they insert only invisible phase shifts. The holographic interference microscopy distinguishes itself from other microscopy methods by using a hologram and the interference for converting invisible phase shifts into intensity changes.

Optical holography is a technique which enables an optical wavefront to be recorded and later re-constructed. Holography is best known as a method of generating three-dimensional images but it also has a wide range of other applications.

Spectral interferometry (SI) or frequency-domain interferometry is a linear technique used to measure optical pulses, with the condition that a reference pulse that was previously characterized is available. This technique provides information about the intensity and phase of the pulses. SI was first proposed by Claude Froehly and coworkers in the 1970s.

<span class="mw-page-title-main">Joseph Rosen (professor)</span> Israeli optoelectronics professor (born 1958)

Joseph Rosen is the Benjamin H. Swig Professor in Optoelectronics at the School of Electrical & Computer Engineering of Ben-Gurion University of the Negev, Israel.

References

  1. 1 2 3 4 Powell RL & Stetson KA, 1965, J. Opt. Soc. Am., 55, 1593-8
  2. Jones R & Wykes C, Holographic and Speckle Interferometry, 1989, Cambridge University Press
  3. Beigzadeh, A.M. (2017). "Modelling of a holographic interferometry based calorimeter for radiation dosimetry". Nuclear Instruments and Methods in Physics Research A. 864: 40–49. Bibcode:2017NIMPA.864...40B. doi:10.1016/j.nima.2017.05.019.
  4. Brooks RE, Heflinger LO and Wuerker RF, 1965 Interferometry with a holographically reconstructed comparison beam, Applied Physics Letters, 7, 248-9
  5. Collier RJ, Doherty ET and Pennington KS, 1965, The application of Moire techniques to holography, Applied Physics Letters, 7, 223-5
  6. Haines KA & Hildebrand BP, 1965, Contour generation by wavefront reconstruction, Physics Letters, 19, 10-11
  7. Haines, K, 2006, J. Holography Speckle, 3, 35
  8. Stetson KA & Powell RL, 1966, J. Opt. Soc. Am., 56, 1161-6
  9. Powell RL & Stetson KA, 1965, J. Opt. Soc. Am., 55, 1694-5
  10. C. C. Aleksoff (1971). "Temporally Modulated Holography". Applied Optics. 10 (6): 1329–1341. Bibcode:1971ApOpt..10.1329A. doi:10.1364/AO.10.001329. PMID   20111115.
  11. F Joud; F Verpillat; F Laloë; M Atlan; J Hare; M Gross (2009). "Fringe-free holographic measurements of large-amplitude vibrations". Optics Letters. 34 (23): 3698–3700. arXiv: 1003.5999 . Bibcode:2010arXiv1003.5999J. doi:10.1364/ol.34.003698. PMID   19953166. S2CID   6180061.
  12. N. Verrier; M. Atlan (2013). "Absolute measurement of small-amplitude vibrations by time-averaged heterodyne holography with a dual local oscillator". Optics Letters. 38 (5): 739–41. arXiv: 1211.5328 . Bibcode:2013OptL...38..739V. doi:10.1364/OL.38.000739. PMID   23455283. S2CID   1072347.
  13. Bruno, F.; Laudereau, J. B.; Lesaffre, M.; Verrier; Atlan, M. (2014). "Phase-sensitive narrowband heterodyne holography". Applied Optics. 53 (7): 1252–1257. arXiv: 1301.7532 . Bibcode:2014ApOpt..53.1252B. doi:10.1364/AO.53.001252. PMID   24663351. S2CID   11864797.
  14. Atlan, M.; Gross, M.; Forget, B.; Vitalis, T.; Rancillac, A.; Dunn, A. (August 2006). "Frequency-domain wide-field laser Doppler in vivo imaging". Opt. Lett. 31 (18): 2762–2764. Bibcode:2006OptL...31.2762A. doi:10.1364/ol.31.002762. PMID   16936884.
  15. Jeffrey Bencteux; Pierre Pagnoux; Thomas Kostas; Sam Bayat; Michael Atlan (2015). "Holographic laser Doppler imaging of pulsatile blood flow". Journal of Biomedical Optics. 20 (6): 066006. arXiv: 1501.05776 . Bibcode:2015JBO....20f6006B. doi:10.1117/1.JBO.20.6.066006. PMID   26085180. S2CID   20234484.
  16. Léo Puyo; Isabelle Ferezou; Armelle Rancillac; Manuel Simonutti; Michel Paques; José-Alain Sahel; Mathias Fink; Michael Atlan (2015). "Pulsatile microvascular blood flow imaging by short-time Fourier transform analysis of ultrafast laser holographic interferometry". arXiv: 1510.01892 [physics.med-ph].
  17. Mathilde Pellizzari; Manuel Simonutti; Julie Degardin; José-Alain Sahel; Mathias Fink; Michel Paques; Michael Atlan (2016). "High speed optical holography of retinal blood flow". Optics Letters. 41 (15): 3503–6. arXiv: 1607.07800 . Bibcode:2016OptL...41.3503P. doi:10.1364/OL.41.003503. PMID   27472604. S2CID   40781583.