Homeotic selector gene

Last updated

Homeotic selector genes confer segment identity in Drosophila . They encode homeodomain proteins which interact with Hox and other homeotic genes to initiate segment-specific gene regulation. Homeodomain proteins are transcription factors that share a DNA-binding domain called the homeodomain. [1] Changes in the expression and function of homeotic genes are responsible for the changes in the morphology of the limbs of arthropods as well as in the axial skeletons of vertebrates. [2] [3] Mutations in homeotic selector genes do not lead to elimination of a segment or pattern, but instead cause the segment to develop incorrectly.

Contents

History

The homeotic selector genes were discovered through the genetic analysis of Drosophila over 80 years ago [ citation needed ]. Unusual disturbances were found in the organization of the adult fly, resulting in misplaced limbs, such as legs developing where antennae usually develop or an extra pair of wings developing where halteres should be. This discovery provided a glimpse to understanding how each segment acquires its individual identity. [2]

Drosophila melanogaster Drosophila melanogaster - side (aka).jpg
Drosophila melanogaster

The first homeotic gene cluster, the bithorax complex, was discovered by Edward B. Lewis in 1978. Similar mutations in the complex were found to cluster together, leading Lewis to propose that these homeotic genes arose through a duplication mechanism which would conserve the clusters through evolution. [4] The independent discoveries of the homeobox in the 1983 by Walter Gehring's laboratory at the University of Basel, Switzerland, and Thomas Kaufman's laboratory at Indiana University confirmed Lewis's theory. [5]

Collinearity

Collinearity is found between the order of the genes on the chromosome and the order in which the genes are expressed along the anteroposterior axis of the embryo. For example, the lab gene is found in the 3' position in the Antennapedia complex, and is expressed in the most anterior head region of the embryo. At the same time, the Abd-B gene is located at the 5' position of the Bithorax complex, and expressed in the most posterior region of the embryo. This suggests that the genes may be activated through a graded process, in which the action is gradually spread along the chromosome. Although the significance of colinearity is still not understood, it is thought to have an important role, due to its conservation in arthropods, and vertebrates including humans. [6]

Para-Segment Individuality

Homeotic selector genes encode regulatory DNA-binding proteins which are all related through a highly conserved DNA binding sequences called the homeobox (from which the "Hox Complex" name is derived from). Although each all of the DNA-binding complexes are conserved, each para-segment still has an individual identity. The proteins do not bind directly to the DNA, rather, they interact with other regulatory proteins which are already bound to DNA-binding complexes. Different interactions determine which DNA binding sites are recognized and subsequently activated or repressed. Homeotic selector proteins combine in different combinations with regulatory proteins to give each parasegment its identity. [2]

The Hox Complex Carries Positional Information

Certain signals set up the spatial pattern of expression of the Hox complex early in development. The Hox complex acts like a stamp, giving cells in each segment a long term positional value. The cell memory of a given positional value depends on two inputs, the first being the ability of many Hox proteins to autoactivate their own transcription, and the second derived from two large groups of transcriptional regulators: The Polycomb group and the Trithorax group. A defect in either of these regulators results in a pattern which is initially correct but is not maintained at later embryonic stages. The Polycomb and Trithorax regulators act in opposite ways. The Trithorax group maintains Hox transcription after transcription is already activated. The Polycomb group forms stable complexes that bind to the chromatin of Hox genes, and keep it in a repressed state at sites where Hox genes are not active. [2]

Evolutionary Conservation

Homologs of the Homeotic selector gene are found in a variety of species, varying from cnidarians to nematodes, to mammals. These genes are grouped similarly to the Hox complex found in insects. The mouse has four complexes, HoxA, HoxB, HoxC, and HoxD, each on different chromosomes. Individual genes in each complex correspond to specific members of the Drosophila genome. The mammalian Hox genes can function in Drosophila as partial replacements for the Drosophila Hox genes. Each of the four mammalian Hox complexes has a rough counterpart in the insect complex.

The theory behind this evolutionary conservation stems from the belief that some common ancestor of worms, flies, and vertebrates had a single primordial homeotic selector gene, an ancestral Hox complex, that went through repeated duplication to form a series of tandem genes. In Drosophila, this ancestral Hox complex split into two separate complexes: Antennapedia and Bithorax. In mammals, the whole complex repeatedly duplicated resulting in four Hox complexes. This theory has some faults, including that some individual genes have been duplicated while others have been lost. [6]

Arthropod Diversity

Changes in homeotic gene expression contributes to the diversity. The Drosophila genome holds its eight homeotic genes in two complexes. The Invertebrate genome contains 8-10 of is homeotic genes in only one complex, while Vertebrates have duplicated the Hox complex and have four clusters. Changes in the expression and functionality of individual genes result in various morphology as seen in arthropods. The diversity found between the five groups of arthropods is a result of their modular architecture. The arthropods are composed of a series of repeating body segments that can be modified in a limitless number of ways. While some segments may carry antenna, others can be modified to carry wings. [6] Crustaceans have different morphology within the group due to different patterns of Ubx expression in isopods and brachiopods. Similar to brachiopods, isopods have swimming limbs on the second through eighth thoracic segments, however the limbs on the first thoracic segment are smaller than the others, and are used as feeding limbs. The different pattern of Ubx expression correlates with these modifications, possibly a result of an acquired mutation that allows the Ubx enhancers to no longer mediate expression in the first thoracic segment. [6]

Src Expression

Brachiopods: Src expression is limited to the head region in brachipods and helps in the development of feeding appendages. Ubx is expressed in the thorax where it controls the development of swimming limbs. [2]

Isopods: Src expression is detected in both the head and the first thoracic segment (T1) in isopods and as a result, the swimming limb in T1 is transformed into a feeding appendage (the maxillipped). The posterior expansion of Src is possible by the loss of Ubx expression in T1 because Ubx normally represses Src expression. [2]

Dll Expression

Every insect has six legs, one pair found on each of the three thoracic segments while other arthropods have a variable number of limbs. This change in morphology is due to functional changes in the Ubx regulatory protein. Ubx and abd-A repress the expression of Distal-less, Dll, a gene responsible for the development of limbs. In the Drosophila embryo, Ubx is expressed at high levels in the metathorax and anterior abdominal segments; abd-A is expressed in the posterior abdominal segments. In combination, these two genes do not allow Dll to function in the first seven abdominal segments. However, Ubx is expressed in the metathorax and does not interfere with the Dll expression because Dll is activated before Ubx is expressed. [6]

In crustaceans, there are high levels of both Ubx and DII in all 11 thoracic segments. The expression of DII promotes the development of swimming limbs. The Ubx protein does not repress DII in crustaceans because Ubx is functionally different in insects and crustaceans. [6]

Related Research Articles

<span class="mw-page-title-main">Homeobox</span> DNA pattern affecting anatomy development

A homeobox is a DNA sequence, around 180 base pairs long, that regulates large-scale anatomical features in the early stages of embryonic development. Mutations in a homeobox may change large-scale anatomical features of the full-grown organism.

<i>Drosophila</i> embryogenesis Embryogenesis of the fruit fly Drosophila, a popular model system

Drosophila embryogenesis, the process by which Drosophila embryos form, is a favorite model system for genetics and developmental biology. The study of its embryogenesis unlocked the century-long puzzle of how development was controlled, creating the field of evolutionary developmental biology. The small size, short generation time, and large brood size make it ideal for genetic studies. Transparent embryos facilitate developmental studies. Drosophila melanogaster was introduced into the field of genetic experiments by Thomas Hunt Morgan in 1909.

<span class="mw-page-title-main">Homeosis</span>

In evolutionary developmental biology, homeosis is the transformation of one organ into another, arising from mutation in or misexpression of certain developmentally critical genes, specifically homeotic genes. In animals, these developmental genes specifically control the development of organs on their anteroposterior axis. In plants, however, the developmental genes affected by homeosis may control anything from the development of a stamen or petals to the development of chlorophyll. Homeosis may be caused by mutations in Hox genes, found in animals, or others such as the MADS-box family in plants. Homeosis is a characteristic that has helped insects become as successful and diverse as they are.

Hox genes, a subset of homeobox genes, are a group of related genes that specify regions of the body plan of an embryo along the head-tail axis of animals. Hox proteins encode and specify the characteristics of 'position', ensuring that the correct structures form in the correct places of the body. For example, Hox genes in insects specify which appendages form on a segment, and Hox genes in vertebrates specify the types and shape of vertebrae that will form. In segmented animals, Hox proteins thus confer segmental or positional identity, but do not form the actual segments themselves.

<i>Antennapedia</i> Hox gene

Antennapedia is a Hox gene first discovered in Drosophila which controls the formation of legs during development. Loss-of-function mutations in the regulatory region of this gene result in the development of the second leg pair into ectopic antennae. By contrast gain-of-function alleles convert antennae into ectopic legs.

<span class="mw-page-title-main">Ultrabithorax</span> Protein-coding gene found in Drosophila melanogaster

Ultrabithorax (Ubx) is a homeobox gene found in insects, and is used in the regulation of patterning in morphogenesis. There are many possible products of this gene, which function as transcription factors. Ubx is used in the specification of serially homologous structures, and is used at many levels of developmental hierarchies. In Drosophila melanogaster it is expressed in the third thoracic (T3) and first abdominal (A1) segments and represses wing formation. The Ubx gene regulates the decisions regarding the number of wings and legs the adult flies will have. The developmental role of the Ubx gene is determined by the splicing of its product, which takes place after translation of the gene. The specific splice factors of a particular cell allow the specific regulation of the developmental fate of that cell, by making different splice variants of transcription factors. In D. melanogaster, at least six different isoforms of Ubx exist.

Polycomb-group proteins are a family of protein complexes first discovered in fruit flies that can remodel chromatin such that epigenetic silencing of genes takes place. Polycomb-group proteins are well known for silencing Hox genes through modulation of chromatin structure during embryonic development in fruit flies. They derive their name from the fact that the first sign of a decrease in PcG function is often a homeotic transformation of posterior legs towards anterior legs, which have a characteristic comb-like set of bristles.

In the field of developmental biology, regional differentiation is the process by which different areas are identified in the development of the early embryo. The process by which the cells become specified differs between organisms.

<span class="mw-page-title-main">PBX1</span> Protein found in humans

Pre-B-cell leukemia transcription factor 1 is a protein that in humans is encoded by the PBX1 gene. The homologous protein in Drosophila is known as extradenticle, and causes changes in embryonic development.

<span class="mw-page-title-main">Homeobox protein MSX-1</span> Protein-coding gene in the species Homo sapiens

Homeobox protein MSX-1, is a protein that in humans is encoded by the MSX1 gene. MSX1 transcripts are not only found in thyrotrope-derived TSH cells, but also in the TtT97 thyrotropic tumor, which is a well differentiated hyperplastic tissue that produces both TSHß- and a-subunits and is responsive to thyroid hormone. MSX1 is also expressed in highly differentiated pituitary cells which until recently was thought to be expressed exclusively during embryogenesis. There is a highly conserved structural organization of the members of the MSX family of genes and their abundant expression at sites of inductive cell–cell interactions in the embryo suggest that they have a pivotal role during early development.

<span class="mw-page-title-main">HOXB5</span> Protein-coding gene in humans

Homeobox protein Hox-B5 is a protein that in humans is encoded by the HOXB5 gene.

<span class="mw-page-title-main">HOXD4</span> Protein-coding gene

Homeobox protein Hox-D4 is a protein that in humans is encoded by the HOXD4 gene.

<span class="mw-page-title-main">PRRX1</span> Protein-coding gene in the species Homo sapiens

Paired related homeobox 1 is a protein that in humans is encoded by the PRRX1 gene.

Trithorax-group proteins (TrxG) are a heterogeneous collection of proteins whose main action is to maintain gene expression. They can be categorized into three general classes based on molecular function:

  1. histone-modifying TrxG proteins
  2. chromatin-remodeling TrxG proteins
  3. DNA-binding TrxG proteins,

Homeotic genes are genes which regulate the development of anatomical structures in various organisms such as echinoderms, insects, mammals, and plants. Homeotic genes often encode transcription factor proteins, and these proteins affect development by regulating downstream gene networks involved in body patterning.

<i>Bithorax</i> complex

The Bithorax complex (BX-C) is one of two Drosophila melanogaster homeotic gene complexes, located on the right arm of chromosome 3. It is responsible for the differentiation of the posterior two-thirds of the fly by the regulation of three genes within the complex: Ultrabithorax (Ubx), abdominal A (abd-A), and Abdominal B (Abd-B).

Cellular memory modules are a form of epigenetic inheritance that allow cells to maintain their original identity after a series of cell divisions and developmental processes. Cellular memory modules implement these preserved characteristics into transferred environments through transcriptional memory. Cellular memory modules are primarily found in Drosophila.

<span class="mw-page-title-main">Bxd (gene)</span> Long non-coding RNA

Bithoraxoid (bxd) is a long non-coding RNA found in Drosophila. It silences the expression of the Ultrabithorax (Ubx) gene by transcriptional interference.

M33 is a gene. It is a mammalian homologue of Drosophila Polycomb. It localises to euchromatin within interphase nuclei, but it is enriched within the centromeric heterochromatin of metaphase chromosomes. In mice, the official symbol of M33 gene styled Cbx2 and the official name chromobox 2 are maintained by the MGI. Also known as pc; MOD2. In human ortholog CBX2, synonyms CDCA6, M33, SRXY5 from orthology source HGNC. M33 was isolated by means of the structural similarity of its chromodomain. It contains a region of homology shared by Xenopus and Drosophila in the fifth exon. Polycomb genes in Drosophila mediate changes in higher-order chromatin structure to maintain the repressed state of developmentally regulated genes. It may also involved in the campomelic syndrome and neoplastic disorders linked to allele loss in this region. Disruption of the murine M33 gene, displayed posterior transformation of the sternal ribs and vertebral columns.

<span class="mw-page-title-main">Hox genes in amphibians and reptiles</span>

Hox genes play a massive role in some amphibians and reptiles in their ability to regenerate lost limbs, especially HoxA and HoxD genes.

References

  1. Mannervik M (April 1999). "Target genes of homeodomain proteins". BioEssays. 21 (4): 267–70. doi:10.1002/(SICI)1521-1878(199904)21:4<267::AID-BIES1>3.0.CO;2-C. PMID   10377888.
  2. 1 2 3 4 5 6 Albers B, Johnson A, Lewis J, Roberts K, Walter P (2002). Molecular Biology of the Cell. Garland Science. ISBN   978-0-8153-3218-3. NBK21054.
  3. "Homeotic selector gene – definition from Biology-Online.org". 2009-01-08. Retrieved 2009-12-14.
  4. Maeda RK, Karch F (2009). "Chapter 1 the Bithorax Complex of Drosophila". The bithorax complex of Drosophila an exceptional Hox cluster. Current Topics in Developmental Biology. Vol. 88. pp. 1–33. doi:10.1016/S0070-2153(09)88001-0. ISBN   978-0-12-374529-3. PMID   19651300.{{cite book}}: |journal= ignored (help)
  5. Taubes, GA. Discovering the Homeobox. The Howard Hughes Medical Institute. 2012.
  6. 1 2 3 4 5 6 Watson JD, Baker TA, Bell SP, Gann A, Losick R, Levine MK (2008). Molecular Biology of the Gene (6th ed.). Pearson Education. ISBN   978-0-321-50781-5.