Human accelerated region 1

Last updated
Highly accelerated region 1A/1B
HAR1F RF00635 rna secondary structure.jpg
Identifiers
SymbolHAR1A
Rfam RF00635
Other data
RNA type Gene; lncRNA
Domain(s) Eukaryota;
SO SO:0001463
PDB structures PDBe

Human Accelerated Region 1 (HAR1) is a fascinating piece of the human genome that has been a subject of intense research since its discovery in 2006. It's a segment of DNA located on chromosome 20, and it's been found to be remarkably different between humans and our closest relatives, the chimpanzees.

Contents

What makes HAR1 so special is its rapid evolution. While most of the human genome is very similar to that of chimpanzees, HAR1 has undergone a significant number of mutations specifically in the human lineage. This rapid evolution suggests that HAR1 might play a crucial role in some of the unique characteristics that distinguish humans from other primates.

One of the key findings about HAR1 is its association with a pair of overlapping genes called HAR1A and HAR1B. These genes are involved in the production of long non-coding RNA, which doesn't directly code for proteins but plays a vital role in regulating gene expression.

Research has shown that HAR1A is particularly active in the developing human brain, specifically during the 7th to 18th weeks of gestation. It's found in a region of the brain called the dorsal telencephalon, which is crucial for the development of the cortex, the outer layer of the brain responsible for higher cognitive functions.

Further studies have revealed that HAR1A's structure is different in humans compared to other mammals. This suggests that the changes in HAR1 might have contributed to the development of unique features of the human brain, possibly influencing cognitive abilities like language, memory, and social behavior.

The rapid evolution of HAR1 and its association with brain development have led scientists to speculate about its potential role in the evolution of human intelligence. However, much remains to be understood about the precise function of HAR1 and its impact on human cognition. Further research is needed to unravel the mysteries of this intriguing region of our genome.

Source: CARTA

In molecular biology, Human Accelerated Region 1 (Highly Accelerated Region 1, HAR1) is a segment of the human genome found on the long arm of chromosome 20. It is a human accelerated region. It is located within a pair of overlapping long non-coding RNA genes, HAR1A (HAR1F) and HAR1B (HAR1R). [1]

HAR1A

HAR1A is expressed in Cajal–Retzius cells, contemporaneously with the protein reelin. [1] [2] [3]

HAR1A was identified in August 2006 when human accelerated regions (HARs) were first investigated. These 49 regions represent parts of the human genome that differ significantly from highly conserved regions of our closest ancestors in terms of evolution. Many of the HARs are associated with genes known to play a role in neurodevelopment. One particularly altered region, HAR1, was found in a stretch of genome with no known protein-coding RNA sequences. Two RNA genes, HAR1F and HAR1R, were identified partly within the region. The RNA structure of HAR1A has been shown to be stable, with a secondary structure unlike those previously described.

HAR1A is active in the developing human brain between the 7th and 18th gestational weeks. It is found in the dorsal telencephalon in fetuses. In adult humans, it is found throughout the cerebellum and forebrain; it is also found in the testes. [1] There is evidence that HAR1 is repressed by REST in individuals with Huntington's disease, perhaps contributing to the neurodegeneration associated with the disease. [4]

Further work on the secondary structure of HAR1A has suggested that the human form adopts a different fold to that of other mammals exemplified by the chimpanzee sequence. [5]

HAR1B

The HAR1B gene overlaps HAR1A, and is located on the opposite strand of the chromosome. Its expression in the human brain is lower than that of HAR1A. [1]

See also

Related Research Articles

<span class="mw-page-title-main">Exon</span> A region of a transcribed gene present in the final functional mRNA molecule

An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term exon refers to both the DNA sequence within a gene and to the corresponding sequence in RNA transcripts. In RNA splicing, introns are removed and exons are covalently joined to one another as part of generating the mature RNA. Just as the entire set of genes for a species constitutes the genome, the entire set of exons constitutes the exome.

<span class="mw-page-title-main">Mutation</span> Alteration in the nucleotide sequence of a genome

In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosis, or meiosis or other types of damage to DNA, which then may undergo error-prone repair, cause an error during other forms of repair, or cause an error during replication. Mutations may also result from insertion or deletion of segments of DNA due to mobile genetic elements.

<span class="mw-page-title-main">Human genome</span> Complete set of nucleic acid sequences for humans

The human genome is a complete set of nucleic acid sequences for humans, encoded as DNA within the 23 chromosome pairs in cell nuclei and in a small DNA molecule found within individual mitochondria. These are usually treated separately as the nuclear genome and the mitochondrial genome. Human genomes include both protein-coding DNA sequences and various types of DNA that does not encode proteins. The latter is a diverse category that includes DNA coding for non-translated RNA, such as that for ribosomal RNA, transfer RNA, ribozymes, small nuclear RNAs, and several types of regulatory RNAs. It also includes promoters and their associated gene-regulatory elements, DNA playing structural and replicatory roles, such as scaffolding regions, telomeres, centromeres, and origins of replication, plus large numbers of transposable elements, inserted viral DNA, non-functional pseudogenes and simple, highly repetitive sequences. Introns make up a large percentage of non-coding DNA. Some of this non-coding DNA is non-functional junk DNA, such as pseudogenes, but there is no firm consensus on the total amount of junk DNA.

Non-coding DNA (ncDNA) sequences are components of an organism's DNA that do not encode protein sequences. Some non-coding DNA is transcribed into functional non-coding RNA molecules. Other functional regions of the non-coding DNA fraction include regulatory sequences that control gene expression; scaffold attachment regions; origins of DNA replication; centromeres; and telomeres. Some non-coding regions appear to be mostly nonfunctional, such as introns, pseudogenes, intergenic DNA, and fragments of transposons and viruses. Regions that are completely nonfunctional are called junk DNA.

Molecular evolution describes how inherited DNA and/or RNA change over evolutionary time, and the consequences of this for proteins and other components of cells and organisms. Molecular evolution is the basis of phylogenetic approaches to describing the tree of life. Molecular evolution overlaps with population genetics, especially on shorter timescales. Topics in molecular evolution include the origins of new genes, the genetic nature of complex traits, the genetic basis of adaptation and speciation, the evolution of development, and patterns and processes underlying genomic changes during evolution.

<span class="mw-page-title-main">Non-coding RNA</span> Class of ribonucleic acid that is not translated into proteins

A non-coding RNA (ncRNA) is a functional RNA molecule that is not translated into a protein. The DNA sequence from which a functional non-coding RNA is transcribed is often called an RNA gene. Abundant and functionally important types of non-coding RNAs include transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), as well as small RNAs such as microRNAs, siRNAs, piRNAs, snoRNAs, snRNAs, exRNAs, scaRNAs and the long ncRNAs such as Xist and HOTAIR.

The coding region of a gene, also known as the coding sequence (CDS), is the portion of a gene's DNA or RNA that codes for a protein. Studying the length, composition, regulation, splicing, structures, and functions of coding regions compared to non-coding regions over different species and time periods can provide a significant amount of important information regarding gene organization and evolution of prokaryotes and eukaryotes. This can further assist in mapping the human genome and developing gene therapy.

An intergenic region is a stretch of DNA sequences located between genes. Intergenic regions may contain functional elements and junk DNA.

<span class="mw-page-title-main">Chimpanzee genome project</span> Effort to determine the DNA sequence of the chimpanzee genome

The Chimpanzee Genome Project was an effort to determine the DNA sequence of the chimpanzee genome. Sequencing began in 2005 and by 2013 twenty-four individual chimpanzees had been sequenced. This project was folded into the Great Ape Genome Project.

<span class="mw-page-title-main">Gene</span> Sequence of DNA or RNA that codes for an RNA or protein product

In biology, the word gene has two meanings. The Mendelian gene is a basic unit of heredity. The molecular gene is a sequence of nucleotides in DNA that is transcribed to produce a functional RNA. There are two types of molecular genes: protein-coding genes and non-coding genes.

<span class="mw-page-title-main">Human accelerated regions</span>

Human accelerated regions (HARs), first described in August 2006, are a set of 49 segments of the human genome that are conserved throughout vertebrate evolution but are strikingly different in humans. They are named according to their degree of difference between humans and chimpanzees. Found by scanning through genomic databases of multiple species, some of these highly mutated areas may contribute to human-specific traits. Others may represent loss of functional mutations, possibly due to the action of biased gene conversion rather than adaptive evolution.

Human evolutionary genetics studies how one human genome differs from another human genome, the evolutionary past that gave rise to the human genome, and its current effects. Differences between genomes have anthropological, medical, historical and forensic implications and applications. Genetic data can provide important insights into human evolution.

<span class="mw-page-title-main">EMX1</span> Protein-coding gene in the species Homo sapiens

Homeobox protein EMX1 is a protein that in humans is encoded by the EMX1 gene. The transcribed EMX1 gene is a member of the EMX family of transcription factors. The EMX1 gene, along with its family members, are expressed in the developing cerebrum. EMX1 plays a role in specification of positional identity, the proliferation of neural stem cells, differentiation of layer-specific neuronal phenotypes and commitment to a neuronal or glial cell fate.

<span class="mw-page-title-main">NBPF15</span> Protein-coding gene in the species Homo sapiens

Neuroblastoma breakpoint family, member 15, also known as NBPF15, is a protein which in humans is encoded by the NBPF15 gene. The gene is 18762 bp long, with mRNA that is 3837 bp long. The gene is located on chromosome 1q21.1. Its sub-cellular location is predicted to be in the nucleus and cytoplasm. It contains what is known as the NBPF repeat, which is a two-exon stretch of sequence that is characteristic of all 21 members of the NBPF gene family. The repeat is considered the ancestral exons, and the NBPF family has been linked to primate evolution.

A conserved non-coding sequence (CNS) is a DNA sequence of noncoding DNA that is evolutionarily conserved. These sequences are of interest for their potential to regulate gene production.

<span class="mw-page-title-main">Genome evolution</span> Process by which a genome changes in structure or size over time

Genome evolution is the process by which a genome changes in structure (sequence) or size over time. The study of genome evolution involves multiple fields such as structural analysis of the genome, the study of genomic parasites, gene and ancient genome duplications, polyploidy, and comparative genomics. Genome evolution is a constantly changing and evolving field due to the steadily growing number of sequenced genomes, both prokaryotic and eukaryotic, available to the scientific community and the public at large.

TUC338 is an ultra-conserved element which is transcribed to give a non-coding RNA. The TUC338 gene was first identified as uc.338, along with 480 other ultra-conserved elements in the human genome. Expression of this RNA gene has been found to dramatically increase in hepatocellular carcinoma (HCC) cells.

Epigenetics of human development is the study of how epigenetics effects human development.

<span class="mw-page-title-main">Short interspersed nuclear element</span>

Short interspersed nuclear elements (SINEs) are non-autonomous, non-coding transposable elements (TEs) that are about 100 to 700 base pairs in length. They are a class of retrotransposons, DNA elements that amplify themselves throughout eukaryotic genomes, often through RNA intermediates. SINEs compose about 13% of the mammalian genome.

<i>De novo</i> gene birth Evolution of novel genes from non-genic DNA sequence

De novo gene birth is the process by which new genes evolve from non-coding DNA. De novo genes represent a subset of novel genes, and may be protein-coding or instead act as RNA genes. The processes that govern de novo gene birth are not well understood, although several models exist that describe possible mechanisms by which de novo gene birth may occur.

References

  1. 1 2 3 4 Pollard KS, Salama SR, Lambert N, Lambot MA, Coppens S, Pedersen JS, Katzman S, King B, Onodera C, Siepel A, Kern AD, Dehay C, Igel H, Ares M Jr, Vanderhaeghen P, Haussler D (2006-08-16). "An RNA gene expressed during cortical development evolved rapidly in humans" (PDF). Nature. 443 (7108): 167–172. Bibcode:2006Natur.443..167P. doi:10.1038/nature05113. PMID   16915236. S2CID   18107797. supplement
  2. Pollard KS, Salama SR, King B, et al. (October 2006). "Forces shaping the fastest evolving regions in the human genome". PLOS Genet. 2 (10): e168. doi: 10.1371/journal.pgen.0020168 . PMC   1599772 . PMID   17040131.
  3. Amadio JP, Walsh CA (September 2006). "Brain evolution and uniqueness in the human genome". Cell. 126 (6): 1033–1035. doi: 10.1016/j.cell.2006.09.007 . PMID   16990130. S2CID   16034905.
  4. Johnson R, Richter N, Jauch R, Gaughwin PM, Zuccato C, Cattaneo E, Stanton LW (2010). "The Human Accelerated Region 1 noncoding RNA is repressed by REST in Huntington's disease". Physiol Genomics. 41 (3): 269–274. doi:10.1152/physiolgenomics.00019.2010. PMID   20179156. S2CID   25653037.
  5. Beniaminov A, Westhof E, Krol A (July 2008). "Distinctive structures between chimpanzee and human in a brain noncoding RNA". RNA. 14 (7): 1270–1275. doi:10.1261/rna.1054608. PMC   2441984 . PMID   18511501.

Further reading