Hyder flare

Last updated
A picture recording a Hyder flare which occurred over a three-hour span, on November 1, 2014. Hyder Flare.jpg
A picture recording a Hyder flare which occurred over a three-hour span, on November 1, 2014.

A Hyder flare is slow, large-scale brightening that occurs in the solar chromosphere. [1] It resembles a large but feeble solar flare and is identifiable as the signature of the sudden disappearance of a solar prominence (a "disparition brusque"). These events occur in the quiet Sun, away from active regions or sunspot groups, and typically in the polar crown filament zone near the Sun's poles. Hyder flares have a two-ribbon morphology and can be faintly observed in chromospheric emission lines such as or as enhanced absorption in He I 1083 nm line.

Contents

Hyder flares are caused by the unstable eruption of a magnetic filament channel; the filament rises and may escape from the Sun as a part of a coronal mass ejection, and the visible flare marks the magnetic connectivity of the coronal disturbance.

Unlike active region flares, Hyder flares take a much longer time to reach peak intensity, as much as 30 to 80 minutes and then can continue for several hours. They have not caused any interference with Earthly communications like solar flares, and are rather weak.

The discovery of Hyder flares has been mainly associated with Charles Hyder who developed the mechanism describing them in 1967. Some disagree with Hyder's findings and especially with his interesting mechanism, explaining what actually produces the flare. [2]

Although rare, a notable occurrence that took place November 1, 2014, confirmed that they display special characteristics distinguishing them from solar flares. [3]

Cause

One explanation for these solar flares comes from Hyder's two-fold observations. First, such flares tend to have a parallel double-ribbon shape, with one ribbon on either side of the magnetic polarity inversion line under a filament. Second, these flares tend not to be associated with geomagnetic storms. [1]

Quiescent filaments have been believed to belong to a magnetic trough, which can disappear due to the field's reconfiguration. When this happens, the filamentary material is said to be thrown into the corona, creating a typical solar flare. Hyder explains that the process for Hyder flares differs, in that sometimes the filamentary material instead cascades down the outer sides of the elevated magnetic trough, or ridge, to interact with the lower chromospheric material that is producing the flare. If this falling process is not symmetrical on either side, then there will be a double parallel ribbon shape form, whereas a symmetrical fall will produce only a single parallel ribbon. A sporadic or insufficient fall of filamentary material will cause bright knots of solar flares to be produced. [1]

History

Hyder flares were first observed by Max Waldmeier in 1938, who wrote a paper describing the phenomenon of suddenly disappearing filaments (disparition brusque), and mentioned that these can be associated with flare-like brightenings. [2] Subsequent research wasn't completed until Charles Hyder published two papers in 1967 with the journal Solar Physics in which a proposed mechanism underlying Hyder flares was discussed in detail. [2]

The Hyder mechanism immediately came into controversy, most notably by Harold Zirin. Zirin questioned the filament falling down the side of the magnetic ridge, stating that magnetic reconfigurations will always create ejection. Comparisons to Hyder's 1968 publications were discussed in Harold Zirin and D. Russo Lackner's Volume 6, Issue 1 of Solar Physics pages 86–103: The Solar Flares of August 28 and 30, 1996. [4]

Occurrences

As Hyder flares are notably rare, few occurrences have been recorded since their discovery. The most notable event took place between 0400 and 0600 UTC on November 1, 2014 and was defined as a C-Class flare. Scientists noted that the eruption caused plasma to be accelerated towards the Sun, which then caused several flashes of X-rays upon impact. The remaining plasma was ejected out into interplanetary space and formed a large core of coronal mass ejection. [5]

Hazards

Hyder flares are generally lower in intensity relative to active region flares, [1] and it is commonly accepted that they pose no immediate threat to Earth. These flares can potentially affect space weather, however, which could disrupt electronics. Because of this, many precautions must be taken to prevent damages to airplane navigation and/or government technologies. [6]

Related Research Articles

<span class="mw-page-title-main">Stellar corona</span> Outermost layer of a stars atmosphere

A corona is the outermost layer of a star's atmosphere. It is a hot but relatively dim region of plasma populated by intermittent coronal structures known as solar prominences or filaments.

<span class="mw-page-title-main">Solar wind</span> Stream of charged particles from the Sun

The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5 and 10 keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, and 58Ni, 60Ni, and 62Ni. Superimposed with the solar-wind plasma is the interplanetary magnetic field. The solar wind varies in density, temperature and speed over time and over solar latitude and longitude. Its particles can escape the Sun's gravity because of their high energy resulting from the high temperature of the corona, which in turn is a result of the coronal magnetic field. The boundary separating the corona from the solar wind is called the Alfvén surface.

<span class="mw-page-title-main">Solar flare</span> Eruption of electromagnetic radiation

A solar flare is a relatively intense, localized emission of electromagnetic radiation in the Sun's atmosphere. Flares occur in active regions and are often, but not always, accompanied by coronal mass ejections, solar particle events, and other eruptive solar phenomena. The occurrence of solar flares varies with the 11-year solar cycle.

<span class="mw-page-title-main">Coronal mass ejection</span> Ejecta from the Suns corona

A coronal mass ejection (CME) is a significant ejection of magnetic field and accompanying plasma mass from the Sun's corona into the heliosphere. CMEs are often associated with solar flares and other forms of solar activity, but a broadly accepted theoretical understanding of these relationships has not been established.

A solar storm is a disturbance on the Sun, which can emanate outward across the heliosphere, affecting the entire Solar System, including Earth and its magnetosphere, and is the cause of space weather in the short-term with long-term patterns comprising space climate.

<span class="mw-page-title-main">Solar prominence</span> Structure extending off of the Suns surface

In solar physics, a prominence, sometimes referred to as a filament, is a large plasma and magnetic field structure extending outward from the Sun's surface, often in a loop shape. Prominences are anchored to the Sun's surface in the much brighter photosphere, and extend outwards into the solar corona. While the corona consists of extremely hot plasma, prominences contain much cooler plasma, similar in composition to that of the chromosphere.

<span class="mw-page-title-main">Moreton wave</span> Large-scale chromospheric perturbation

A Moreton wave, Solar Tsunami, or Moreton-Ramsey wave is the chromospheric signature of a large-scale solar corona shock wave. Described as a kind of solar "tsunami", they are generated by solar flares. They are named for American astronomer Gail Moreton, an observer at the Lockheed Solar Observatory in Burbank, and Harry E. Ramsey, an observer who spotted them in 1959 at The Sacramento Peak Observatory. He discovered them in time-lapse photography of the chromosphere in the light of the Balmer alpha transition.

<span class="mw-page-title-main">Solar cycle 24</span> Solar activity from December 2008 to December 2019

Solar cycle 24 is the most recently completed solar cycle, the 24th since 1755, when extensive recording of solar sunspot activity began. It began in December 2008 with a minimum smoothed sunspot number of 2.2, and ended in December 2019. Activity was minimal until early 2010. It reached its maximum in April 2014 with a 23 months smoothed sunspot number of 81.8. This maximum value was substantially lower than other recent solar cycles, down to a level which had not been seen since cycles 12 to 15 (1878-1923).

In solar physics and observation, an active region is a temporary feature in the Sun's atmosphere characterized by a strong and complex magnetic field. They are often associated with sunspots and are commonly the source of violent eruptions such as coronal mass ejections and solar flares. The number and location of active regions on the solar disk at any given time is dependent on the solar cycle.

The Arctowski Medal is awarded by the U.S. National Academy of Sciences "for studies in solar physics and solar-terrestrial relationships." Named in honor of Henryk Arctowski, it was first awarded in 1969.

<span class="mw-page-title-main">Solar cycle 23</span> Solar activity from August 1996 to December 2008

Solar cycle 23 was the 23rd solar cycle since 1755, when extensive recording of solar sunspot activity began. The solar cycle lasted 12.3 years, beginning in August 1996 and ending in December 2008. The maximum smoothed sunspot number observed during the solar cycle was 180.3, and the starting minimum was 11.2. During the minimum transit from solar cycle 23 to 24, there were a total of 817 days with no sunspots. Compared to the last several solar cycles, it was fairly average in terms of activity.

<span class="mw-page-title-main">Nanoflare</span> Type of episodic heating event

A nanoflare is a very small episodic heating event which happens in the corona, the external atmosphere of the Sun.

<span class="mw-page-title-main">Solar particle event</span> Solar phenomenon

In solar physics, a solar particle event (SPE), also known as a solar energetic particle event or solar radiation storm, is a solar phenomenon which occurs when particles emitted by the Sun, mostly protons, become accelerated either in the Sun's atmosphere during a solar flare or in interplanetary space by a coronal mass ejection shock. Other nuclei such as helium and HZE ions may also be accelerated during the event. These particles can penetrate the Earth's magnetic field and cause partial ionization of the ionosphere. Energetic protons are a significant radiation hazard to spacecraft and astronauts.

<span class="mw-page-title-main">Solar cycle 25</span> Predicted Sun activity 2019 to about 2030

Solar cycle 25 is the current solar cycle, the 25th since 1755, when extensive recording of solar sunspot activity began. It began in December 2019 with a minimum smoothed sunspot number of 1.8. It is expected to continue until about 2030.

<span class="mw-page-title-main">Solar phenomena</span> Natural phenomena within the Suns atmosphere

Solar phenomena are natural phenomena which occur within the atmosphere of the Sun. They take many forms, including solar wind, radio wave flux, solar flares, coronal mass ejections, coronal heating and sunspots.

<span class="mw-page-title-main">Supra-arcade downflows</span> Sunward-traveling plasma voids observed in the Suns outer atmosphere

Supra-arcade downflows (SADs) are sunward-traveling plasma voids that are sometimes observed in the Sun's outer atmosphere, or corona, during solar flares. In solar physics, arcade refers to a bundle of coronal loops, and the prefix supra indicates that the downflows appear above flare arcades. They were first described in 1999 using the Soft X-ray Telescope (SXT) on board the Yohkoh satellite. SADs are byproducts of the magnetic reconnection process that drives solar flares, but their precise cause remains unknown.

Jiong Qiu (邱炯) is a Chinese-born American astrophysicist who won the Karen Harvey Prize for her work in solar flares.

<span class="mw-page-title-main">Gordon Dean Holman</span> American astrophysicist, NASA scientist

Gordon Dean Holman is an emeritus research astrophysicist at the National Aeronautics and Space Administration's (NASA’s) Goddard Space Flight Center in Greenbelt, Maryland. His research mostly focused on obtaining an understanding of high-energy radiation from astronomical objects. This radiation cannot be observed from Earth's surface, but is observed with instruments on satellites launched to orbits above Earth's atmosphere. It is primarily emitted by high-energy electrons interacting with ions. These electrons also emit radiation at radio frequencies which is observed from Earth's surface. Consequently, these observations from space and radio telescopes provide a view of hot gas and energetic particles in the Universe that could not otherwise be obtained. Holman has specialized in the interpretation of these observed emissions to determine the origin and evolution of this hot gas and energetic particles. He has been described as "not just a theorist, he also looks at the data".

References

  1. 1 2 3 4 Space Weather Services: Hyder Flares at the Australian Government Bureau of Meteorology; retrieved February 6, 2016
  2. 1 2 3 Solar Physics: Volume 2 from Solar Physics, Volume 2, Issue 3, pp.267-284 of the SAO/NASA Astrophysics Data System (ADS); retrieved February 6, 2016
  3. Space.com: Hyder Flares November occurrence of rare Hyder flare; retrieved February 6, 2016
  4. Solar Physics: Volume 6 from Solar Physics, Volume 6, Issue 1, pp.86-103 of the SAO/NASA Astrophysics Data System (ADS); retrieved February 6, 2016
  5. Description of November 1st Occurrence November occurrence of rare Hyder flare; retrieved February 6, 2016
  6. Science Daily: Solar Flare from NASA/Goddard Space Flight Center published on Science Daily; retrieved February 6, 2016