Developer(s) | Aquanty |
---|---|
Stable release | 2023 |
Operating system | Windows, Linux |
Type | Hydrogeology software |
License | Proprietary |
Website | www |
HydroGeoSphere (HGS) is a 3D control-volume finite element groundwater model, and is based on a rigorous conceptualization of the hydrologic system consisting of surface and subsurface flow regimes. [1] [2] The model is designed to take into account all key components of the hydrologic cycle. For each time step, the model solves surface and subsurface flow, solute and energy transport equations simultaneously, and provides a complete water and solute balance.
The original name for the code was FRAC3DVS, which was created by René Therrien in 1992. [3] The code was further developed jointly at the University of Waterloo and the Laval University, and was primarily used for academic research. It was renamed to HydroGeoSphere in 2002 with the implementation of 2D surface water flow and transport. [2] In 2012, the software became commercialized under the support and management of Aquanty Inc.
In order to accomplish the integrated analysis, HydroGeoSphere utilizes a rigorous, mass conservative modeling approach that fully couples the surface flow and transport equations with the 3-D, variably saturated subsurface flow and transport equations. This approach is significantly more robust than previous conjunctive approaches that rely on linkage of separate surface and subsurface modeling codes.
HydroGeoSphere assumes that the subsurface flow equation in a porous medium is always solved during a simulation, either for fully saturated or variably saturated flow conditions. The subsurface flow equation can be expanded to incorporate discrete fractures, a second interacting porous continuum, wells, tile drains and surface flow. The following assumptions are made for subsurface flow:
The Richards’ equation is used to describe three-dimensional transient subsurface flow in a variably saturated porous medium:
The fluid flux, , is represented by the Darcy's law shown as:
where is the volumetric fraction of the total porosity occupied by the porous medium, is the internal fluid exchange rate (e.g. surface water, wells, and tile drains), is the external fluid outside of the model domain, is the saturated water content, is the degree of saturation, is the hydraulic conductivity tensor, is the relative permeability of the medium calculated as a function of saturation, is the pressure head, and is the elevation head.
Areal surface water flow is represented in HydroGeoSphere by a two-dimensional depth-averaged flow equation, which is the diffusion-wave approximation of the Saint Venant equation for surface water flow. HydroGeoSphere's surface water flow component is implemented with the following assumptions:
The surface flow components are solved by the following three equations, which are given by the following mass balance equation:
coupled with the momentum equations, neglecting inertia terms, for the x-direction:
and for the y-direction:
where is the surface flow domain porosity, is the water surface elevation, and are the vertically averaged flow velocities in the x and y directions, is the depth of surface water flow, is the internal fluid exchange, and is the external fluid exchange. The surface conductances, and are approximated by either the Manning or Chezy equation.
Three-dimensional transport of solutes is described by the modified reactive transport advective-dispersion equation:
where is the solute concentration, is the first-order decay constant, is the external source or sink term, is the internal solute transfer between domains, is the retardation factor, is the diffusion coefficient, and designates parent species for the case of a decay chain.
Graf [2005] incorporated heat transport within the saturated-zone flow regime into HydroGeoSphere together with temperature-dependent fluid properties, such as viscosity and density. The model’s capability was successfully demonstrated for the case of thermohaline flow and transport in porous and fractured porous media [Graf and Therrien, 2007]. This work extends the model’s capability to include thermal energy transport in the unsaturated zone and in the surface water, which is considered a key step in the linkage between the atmospheric and hydrologic systems. Surface heat fluxes from atmospheric inputs are an important source/sink of thermal energy, especially to the surface water system. As such, surface heat fluxes across the land surface were also incorporated into HydroGeoSphere. A complete description of the physical processes and governing flow and solute transport equations that form the basis of HydroGeoSphere can be found in Therrien et al. [2007] and therefore will not be presented here.
The general equation for variably saturated subsurface thermal energy transport following Molson et al. [1992] is given by:
where is the density, is the heat capacity, is the temperature of the bulk subsurface, is the thermal conductivity, is the thermal dispersion term, is the thermal source/sink, is the thermal interactions between the surface and subsurface, and is the external thermal interactions.
The 2-D areal surface flow modules of HydroGeoSphere follow the same conventions for spatial and temporal discretizations as those used by the subsurface modules. The surface flow equation is solved on a 2-D finite-element mesh stacked upon a subsurface grid when solving for both domains (i.e. the x- and y-locations of nodes are the same for each layer of nodes). For superposition, the grid generated for the subsurface domain is mirrored areally for the surface flow nodes, with surface flow node elevations corresponding to the top elevation of the topmost active layer of the subsurface grid. Note that surface flow node elevations may vary substantially to conform with topography. However, the assumptions of small slope inherent in the diffusion-wave equation will not allow for modeling of inertial effects.
The discretized surface equation is coupled with the 3-D subsurface flow equation via superposition (common node approach) or via leakage through a surficial skin layer (dual node approach). For both approaches, fully implicit coupling of the surface and subsurface flow regimes provides an integral view of the movement of water, as opposed to the traditional division of surface and subsurface regimes. Flux across the land surface is, therefore, a natural internal process allowing water to move between the surface and subsurface flow systems as governed by local flow hydrodynamics, instead of using physically artificial boundary conditions at the interface. When the subsurface connection is provided via superposition, HydroGeoSphere adds the surface flow equation terms for the 2-D surface mesh to those of the top layer of subsurface nodes. In that case, the fluid exchange flux, which contains leakance term does not need to be explicitly defined.
The HGS model is a three-dimensional control-volume finite element simulator which is designed to simulate the entire terrestrial portion of the hydrologic cycle. It uses a globally implicit approach to simultaneously solve the 2D diffusive-wave equation and the 3D form of Richards’ equation. HGS also dynamically integrates key components of the hydrologic cycle such as evaporation from bare soil and water bodies, vegetation-dependent transpiration with root uptake, snowmelt and soil freeze/thaw. Features such as macro pores, fractures, and tile drains can either be incorporated discretely or using a dual-porosity, dual permeability formulation. Additionally, HydroGeoSphere has been linked to Weather Research and Forecasting, a mesoscale atmospheric model for fully coupled subsurface, surface, and atmospheric simulations. [4]
Fick's laws of diffusion describe diffusion and were first posited by Adolf Fick in 1855 on the basis of largely experimental results. They can be used to solve for the diffusion coefficient, D. Fick's first law can be used to derive his second law which in turn is identical to the diffusion equation.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as
The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).
In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem which relates the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.
In mathematics and physics, the heat equation is a certain partial differential equation. Solutions of the heat equation are sometimes known as caloric functions. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region.
The primitive equations are a set of nonlinear partial differential equations that are used to approximate global atmospheric flow and are used in most atmospheric models. They consist of three main sets of balance equations:
A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.
Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances.
Used in hydrogeology, the groundwater flow equation is the mathematical relationship which is used to describe the flow of groundwater through an aquifer. The transient flow of groundwater is described by a form of the diffusion equation, similar to that used in heat transfer to describe the flow of heat in a solid. The steady-state flow of groundwater is described by a form of the Laplace equation, which is a form of potential flow and has analogs in numerous fields.
MODFLOW is the U.S. Geological Survey modular finite-difference flow model, which is a computer code that solves the groundwater flow equation. The program is used by hydrogeologists to simulate the flow of groundwater through aquifers. The source code is free public domain software, written primarily in Fortran, and can compile and run on Microsoft Windows or Unix-like operating systems.
The Richards equation represents the movement of water in unsaturated soils, and is attributed to Lorenzo A. Richards who published the equation in 1931. It is a quasilinear partial differential equation; its analytical solution is often limited to specific initial and boundary conditions. Proof of the existence and uniqueness of solution was given only in 1983 by Alt and Luckhaus. The equation is based on Darcy-Buckingham law representing flow in porous media under variably saturated conditions, which is stated as
Diffusiophoresis is the spontaneous motion of colloidal particles or molecules in a fluid, induced by a concentration gradient of a different substance. In other words, it is motion of one species, A, in response to a concentration gradient in another species, B. Typically, A is colloidal particles which are in aqueous solution in which B is a dissolved salt such as sodium chloride, and so the particles of A are much larger than the ions of B. But both A and B could be polymer molecules, and B could be a small molecule. For example, concentration gradients in ethanol solutions in water move 1 μm diameter colloidal particles with diffusiophoretic velocities of order 0.1 to 1 μm/s, the movement is towards regions of the solution with lower ethanol concentration. Both species A and B will typically be diffusing but diffusiophoresis is distinct from simple diffusion: in simple diffusion a species A moves down a gradient in its own concentration.
A hydrologic model is a simplification of a real-world system that aids in understanding, predicting, and managing water resources. Both the flow and quality of water are commonly studied using hydrologic models.
In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.
The convection–diffusion equation is a combination of the diffusion and convection (advection) equations, and describes physical phenomena where particles, energy, or other physical quantities are transferred inside a physical system due to two processes: diffusion and convection. Depending on context, the same equation can be called the advection–diffusion equation, drift–diffusion equation, or (generic) scalar transport equation.
Diffusion is the net movement of anything generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemical potential. It is possible to diffuse "uphill" from a region of lower concentration to a region of higher concentration, as in spinodal decomposition. Diffusion is a stochastic process due to the inherent randomness of the diffusing entity and can be used to model many real-life stochastic scenarios. Therefore, diffusion and the corresponding mathematical models are used in several fields beyond physics, such as statistics, probability theory, information theory, neural networks, finance, and marketing.
In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.
Morris Muskat et al. developed the governing equations for multiphase flow in porous media as a generalisation of Darcy's equation for water flow in porous media. The porous media are usually sedimentary rocks such as clastic rocks or carbonate rocks.
The Marine Unsaturated Model is a two-dimensional finite element model capable of simulating the migration of water and solutes in saturated-unsaturated porous media while accounting for the impact of solute concentration on water density and viscosity, as saltwater is heaving and more viscous than freshwater. The detailed formulation of the MARUN model is found in and. The model was used to investigate seepage flow in trenches and dams, the migration of brine following evaporation and, submarine groundwater discharge, and beach hydrodynamics to explain the persistence of some of the Exxon Valdez oil in Alaska beaches.
Groundwater contamination by pharmaceuticals, which belong to the category of contaminants of emerging concern (CEC) or emerging organic pollutants (EOP), has been receiving increasing attention in the fields of environmental engineering, hydrology and hydrogeochemistry since the last decades of the twentieth century.