Hydrogen cryomagnetics

Last updated

Hydrogen cryomagnetics is a term used to denote the use of cryogenic liquid hydrogen to cool the windings of an electromagnet. [1] A key benefit of hydrogen cryomagnetics is that low temperature liquid hydrogen can be deployed simultaneously both as a cryogen to cool electromagnet windings and as an energy carrier . That is, powerful synergistic benefits are likely to arise when hydrogen is used as a fuel and as a coolant. [2] Even without the fuel/coolant synergies, hydrogen cryomagnetics is an attractive option for the cooling of superconducting electromagnets as it eliminates dependence upon increasingly scarce and expensive liquid helium. [3] [4] For hydrogen cryomagnetic applications specialist hydrogen-cooled electromagnets are wound using either copper or superconductors. Liquid-hydrogen-cooled copper-wound magnets work well as pulsed field magnets. [5] Superconductors have the property that they can operate continuously and very efficiently as electrical resistive losses are almost entirely avoided. [6] Most commonly the term "hydrogen cryomagnetics" is used to denote the use of cryogenic liquid hydrogen directly, or indirectly, to enable high temperature superconductivity in electromagnet windings. [1]

Contents

Hydrogen cryomagnetics is especially useful where high magnetic fields are required, such as in high torque electric motors. At atmospheric pressure liquid hydrogen boils at approximately 20.3 K [7] (-259.3 °C). Liquid hydrogen at such a temperature is significantly colder than the temperatures at which superconductivity can first be induced in a range of important high temperature superconductors including yttrium barium copper oxide (YBCO), because YBCO has a superconducting transition temperature (Tc) of 93 K. [8] The operation of YBCO-based superconducting magnets at a temperature more than 70 K below Tc allows for the use of very high current densities and very high magnetic fields without loss of superconductivity. [9] The materials properties of YBCO are such that it cannot be made into ductile wires although much progress has been made towards high field YBCO electromagnets based on the use of tapes rather than wires. [10] Another superconductor suitable for hydrogen cryomagnetic use is magnesium diboride. [11] [12] Magnesium diboride is a conventional superconductor and it can be prepared in flexible wires facilitating its potential application in, for example, tokamak fusion reactors. [11] Magnesium diboride has a transition temperature of 39 K. [13] While at atmospheric pressure liquid hydrogen is cold enough to cool magnesium diboride into the superconducting state, there are advantages to pumping on the hydrogen so as to lower its temperature still further when in use such a magnet winding (this uses the same physics that says that the boing point of water can be reduced by reducing the pressure above the liquid, see e.g. [14] ). Generally the greater the difference between conductor temperature and superconducting transition temperature the better. Liquid hydrogen is not the only way cryogenically to cool a magnet, indeed conventionally superconductors are cooled using liquid helium at 4.2K and for conventional conductor pulsed magnets (including copper) most attention has been given to liquid nitrogen at 77 K. [15] Liquid hydrogen can be expected to drive better performance than liquid nitrogen and, as discussed below, liquid hydrogen avoids several concerns around helium availability.

Any use of hydrogen cryomagnetics requires careful consideration of hydrogen safety.

Hydrogen cryomagnetics is concept distinct from the use of higher temperature gaseous hydrogen as a coolant in power plant turbines.

Origins

The term hydrogen cryomagnetics was first used in a text panel forming part of an article by Professor WJ Nuttall and Professor BA Glowacki published in July 2008 in Nuclear Engineering International. [16] The concept was returned to in an Institute of Physics conference held in Manchester England in April 2010. [17] The presentation was delivered by Professor WJ Nuttall and co-authored by Professor BA Glowacki and Dr L Bromberg. The journey to the term also involved thinking around Hydrogen as a Fuel and as a Coolant – from the superconductivity perspective [2] . Earlier related consideration of liquid hydrogen as a cryogenic coolant includes work by Glowacki and co-authors from 2005 [18] and 2006. [19] The concept of hydrogen cryomagnetics has been further elaborated and discussed in 2012, [20] 2015 [1] and 2019. [21]

Attributes

The emergence of hydrogen cryomagnetics can be expected to benefit from the development of strong industrial interest in liquid hydrogen that can be expected to occur for other reasons, including the growth of a general hydrogen economy and the need to transport and store bulk hydrogen. [21] Global interest is growing in the emergence of a hydrogen economy in which hydrogen is a low-carbon energy carrier sourced from renewables (green hydrogen) or alternatively from natural gas with carbon capture and storage (this is sometimes termed "blue hydrogen"). When pipelines are unavailable. the use of liquefied hydrogen for the bulk transport and distribution of hydrogen molecules has been found to be the more efficient than high pressure gas cylinders when moving the large quantities over the large distances. [22] Hydrogen (as liquid or gas) is an energy storage system in competition with electric battery technology. [22] Hydrogen wins out over batteries for the largest quantitites of energy stored over the longest period. Hydrogen fuel cells are win out over battery electric technologies for the heaviest forms of transportation - such as trains, trucks and buses [22] Hydrogen technology is in competition with battery technology and gaseous hydrogen technology is in competition with liquid hydrogen technology. As these competitive forces pay out it is quite possible that a significant role will emerge for liquid hydrogen as a stationary long-term and large-scale energy storage system and fuelling system for heavier vehicles. In such scenarios, the emerging economic role of liquid hydrogen production and distribution can be expected to greatly favour the subsequent use of hydrogen in cryomagnetic applications.

Avoiding the problems of helium

Japanese prototype liquid hydrogen carrier Suiso Frontier, Kobe, Japan, October 2020. SUISO FRONTIER left rear view at Kawasaki Heavy Industries Kobe Shipyard October 18, 2020 01.jpg
Japanese prototype liquid hydrogen carrier Suiso Frontier, Kobe, Japan, October 2020.

The conventional way to cool superconducting magnets is to use liquid helium (atmospheric pressure boiling point 4.2K). Helium is a by product of the current natural gas industry [3] and its fluctuating price and availability have been a cause of much concern in recent years. [23] Improved efficiency of use, and the avoidance of waste, can be expected to stretch helium supplies. Further natural gas sourced helium cannot necessarily be expected to continue if natural gas is to be phased out on a journey to Net-Zero. There is a need for those helium using sectors that can substitute away from helium to do so. [24] Those users that could safely switch to hydrogen cryomagnetics could see a significant reduction in operating costs and avoid risks associated with helium supply scarcity.

Better electric motors

In the twentieth century the dominant type of electric motor was an induction motor using tightly wound copper wire coils to generate the necessary internal magnetic fields. More recently, and in part spurred on by the growth in battery electric vehicles, there has been much innovation in permanent magnet motors. These rely on high field permanent magnets relying on rare earth minerals. Hydrogen cryomagnetics provides for the possibility of superconducting induction motors cooled by liquid hydrogen at approximately 20K. Such cryogenic liquid might be available on a vehicle (such as an airplane, train, truck, bus or even car) if high purity hydrogen is used for on-board fuel cell electricity generation.

Liquid hydrogen - a source of high purity hydrogen

The boil off gas from a tank of liquid hydrogen can be expected to be extremely pure and clean. In a sense the liquid hydrogen has been distilled. Extended operation of Fuel Cell Electric Vehicles, for example, relies on the need to protect fuel cell membranes and catalysts from contamination. [25] Fuel cell degradation in use can have many causes, [26] but nevertheless fuel purity (in normal conditions and in the case of refuelling equipment failure) can be expected to be a major concern for any system relying on high pressure hydrogen gas handling.

Potential applications

Various potential applications of hydrogen cryomagnetics have been reviewed by Mojarrad and co-workers in 2022. [27] Some potential applications are listed below.

Fusion energy

The concept of applied hydrogen cryomagnetics first emerged in connection with magnetically confined nuclear fusion. WJ Nuttall had proposed in 2004 that the commercialisation of fusion energy might be via the international oil companies rather than via electricity. [28] For technical and economic reasons fusion energy might be a viable means to produce liquid hydrogen for the hydrogen economy in ways reminiscent of today's liquefied natural gas economy. Conventional tokamak fusion is likely to require very large amounts of expensive and scarce liquid helium to cool superconducting magnets. Liquid helium is a key consumable in the conventional paradigm. Noting the potential abundance of liquid hydrogen at a future fusion facility owned by one of today's international oil companies it would seem natural to use the cryogenic hydrogen to help break the dependence on helium. Hydrogen cryomagnetics has the potential to facilitate tokamak fusion energy. These ideas came together as a concept known as 'Fusion Island' developed by WJ Nuttall, BA Glowacki and RH Clarke. [29] The Fusion Island concept was outlined further in 2008 [16] and 2021. [30] Commonwealth Fusion Systems in Massachusetts is actively exploring superconducting magnet technologies cooled to liquid hydrogen temperatures. [31]

Aviation
Boeing hydrogen fuel cell aircraft demonstrator in 2008 Boeing Fuel Cell Demonstrator AB1.JPG
Boeing hydrogen fuel cell aircraft demonstrator in 2008

Another significant opportunity for hydrogen cryomagnetics lies in low CO2 emissions aviation. [32] Airbus, Rolls-Royce and collaborators have been pioneering the use of liquid hydrogen in aircraft propulsion. Writing in Aviation Week in April 2021, Thierry Dubois observed: [33] "Airbus has launched an ambitious demonstration program for the use of superconducting technology. It is aiming at a major efficiency improvement. The idea stems from both the difficulty of designing an electric-propulsion architecture with conventional wiring and the opportunity to use liquid hydrogen as a cold source. Superconducting materials require cryogenic temperatures." Hydrogen cryomagnetics permits the on aircraft use of hydrogen fuel cell technology to generate electricity to drive high torque HTS based electric motors capable of driving propellers or ducted fans at high efficiency. The Advanced Superconducting Motor Experimental Demonstrator (ASuMED) programme funded by the European Union, is working on a 99% efficient superconducting aircraft engine with a power-to-weight ratio of 20 kW/kg. [34] Researchers at Moscow Aviation Institute have proposed a design for a 5MW hydrogen cryomagnetic aero engine. [35] Even before the benefits to be obtained from the use hydrogen cryomagnetic superconducting induction motors hydrogen is attracting much interest as a low emission aviation fuel of the future. Airbus has an active hydrogen program as do other major industrial concerns in global aviation.

Metals processing industry

Hydrogen cryomagnetics has potentially beneficial synergistic links with the emerging low emission steel industry as being pioneered by SSAB in Sweden. [36] Hydrogen is being developed as an alternative to coking coal for the reduction of iron ores to produce pig iron ('smelting'). The use of hydrogen for such purposes would greatly strengthen links between hydrogen and steel making. With that in mind, if a forge were to have access to cryogenic liquid hydrogen then large scale magnetic induction forging based upon hydrogen cryomagnetic technology could be extremely economically attractive, especially for billet heating. [37]

Related Research Articles

<span class="mw-page-title-main">Cryogenics</span> Study of the production and behaviour of materials at very low temperatures

In physics, cryogenics is the production and behaviour of materials at very low temperatures.

<span class="mw-page-title-main">Superconductivity</span> Electrical conductivity with exactly zero resistance

Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered, even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source.

Technological applications of superconductivity include:

<span class="mw-page-title-main">Liquid helium</span> Liquid state of the element helium

Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity.

<span class="mw-page-title-main">Magnesium diboride</span> Chemical compound

Magnesium diboride is the inorganic compound with the formula MgB2. It is a dark gray, water-insoluble solid. The compound has attracted attention because it becomes superconducting at 39 K (−234 °C). In terms of its composition, MgB2 differs strikingly from most low-temperature superconductors, which feature mainly transition metals. Its superconducting mechanism is primarily described by BCS theory.

<span class="mw-page-title-main">Superconducting magnet</span> Electromagnet made from coils of superconducting wire

A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings. They are used in MRI instruments in hospitals, and in scientific equipment such as NMR spectrometers, mass spectrometers, fusion reactors and particle accelerators. They are also used for levitation, guidance and propulsion in a magnetic levitation (maglev) railway system being constructed in Japan.

<span class="mw-page-title-main">Yttrium barium copper oxide</span> Chemical compound

Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds that display high-temperature superconductivity; it includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen [77 K ] at about 93 K.

A refrigerator designed to reach cryogenic temperatures is often called a cryocooler. The term is most often used for smaller systems, typically table-top size, with input powers less than about 20 kW. Some can have input powers as low as 2–3 W. Large systems, such as those used for cooling the superconducting magnets in particle accelerators are more often called cryogenic refrigerators. Their input powers can be as high as 1 MW. In most cases cryocoolers use a cryogenic fluid as the working substance and employ moving parts to cycle the fluid around a thermodynamic cycle. The fluid is typically compressed at room temperature, precooled in a heat exchanger, then expanded at some low temperature. The returning low-pressure fluid passes through the heat exchanger to precool the high-pressure fluid before entering the compressor intake. The cycle is then repeated.

<span class="mw-page-title-main">Cryostat</span> Cooling device

A cryostat is a device used to maintain low cryogenic temperatures of samples or devices mounted within the cryostat. Low temperatures may be maintained within a cryostat by using various refrigeration methods, most commonly using cryogenic fluid bath such as liquid helium. Hence it is usually assembled into a vessel, similar in construction to a vacuum flask or Dewar. Cryostats have numerous applications within science, engineering, and medicine.

A coolant is a substance, typically liquid, that is used to reduce or regulate the temperature of a system. An ideal coolant has high thermal capacity, low viscosity, is low-cost, non-toxic, chemically inert and neither causes nor promotes corrosion of the cooling system. Some applications also require the coolant to be an electrical insulator.

<span class="mw-page-title-main">History of superconductivity</span>

Superconductivity is the phenomenon of certain materials exhibiting zero electrical resistance and the expulsion of magnetic fields below a characteristic temperature. The history of superconductivity began with Dutch physicist Heike Kamerlingh Onnes's discovery of superconductivity in mercury in 1911. Since then, many other superconducting materials have been discovered and the theory of superconductivity has been developed. These subjects remain active areas of study in the field of condensed matter physics.

<span class="mw-page-title-main">Niobium–tin</span> Superconducting intermetallic compound

Niobium–tin is an intermetallic compound of niobium (Nb) and tin (Sn), used industrially as a type-II superconductor. This intermetallic compound has a simple structure: A3B. It is more expensive than niobium–titanium (NbTi), but remains superconducting up to a magnetic flux density of 30 teslas [T] (300,000 G), compared to a limit of roughly 15 T for NbTi.

A fault current limiter (FCL), also known as fault current controller (FCC), is a device which limits the prospective fault current when a fault occurs (e.g. in a power transmission network) without complete disconnection. The term includes superconducting, solid-state and inductive devices.

<span class="mw-page-title-main">Superconducting radio frequency</span> Technique used to attain a high quality factor in resonant cavities

Superconducting radio frequency (SRF) science and technology involves the application of electrical superconductors to radio frequency devices. The ultra-low electrical resistivity of a superconducting material allows an RF resonator to obtain an extremely high quality factor, Q. For example, it is commonplace for a 1.3 GHz niobium SRF resonant cavity at 1.8 kelvins to obtain a quality factor of Q=5×1010. Such a very high Q resonator stores energy with very low loss and narrow bandwidth. These properties can be exploited for a variety of applications, including the construction of high-performance particle accelerator structures.

Superconductors can be classified in accordance with several criteria that depend on physical properties, current understanding, and the expense of cooling them or their material.

<span class="mw-page-title-main">Superconducting wire</span> Wires exhibiting zero resistance

Superconducting wires are electrical wires made of superconductive material. When cooled below their transition temperatures, they have zero electrical resistance. Most commonly, conventional superconductors such as niobium–titanium are used, but high-temperature superconductors such as YBCO are entering the market.

Superconducting electric machines are electromechanical systems that rely on the use of one or more superconducting elements. Since superconductors have no DC resistance, they typically have greater efficiency. The most important parameter that is of utmost interest in superconducting machine is the generation of a very high magnetic field that is not possible in a conventional machine. This leads to a substantial decrease in the motor volume; which means a great increase in the power density. However, since superconductors only have zero resistance under a certain superconducting transition temperature, Tc that is hundreds of degrees lower than room temperature, cryogenics are required.

<span class="mw-page-title-main">Helium cryogenics</span>

In the field of cryogenics, helium [He] is utilized for a variety of reasons. The combination of helium’s extremely low molecular weight and weak interatomic reactions yield interesting properties when helium is cooled below its critical temperature of 5.2 K to form a liquid. Even at absolute zero (0K), helium does not condense to form a solid under ambient pressure. In this state, the zero point vibrational energies of helium are comparable to very weak interatomic binding interactions, thus preventing lattice formation and giving helium its fluid characteristics. Within this liquid state, helium has two phases referred to as helium I and helium II. Helium I displays thermodynamic and hydrodynamic properties of classical fluids, along with quantum characteristics. However, below its lambda point of 2.17 K, helium transitions to He II and becomes a quantum superfluid with zero viscosity.

The ARC fusion reactor is a design for a compact fusion reactor developed by the Massachusetts Institute of Technology (MIT) Plasma Science and Fusion Center (PSFC). ARC aims to achieve an engineering breakeven of three. The key technical innovation is to use high-temperature superconducting magnets in place of ITER's low-temperature superconducting magnets. The proposed device would be about half the diameter of the ITER reactor and cheaper to build.

<span class="mw-page-title-main">Rare-earth barium copper oxide</span> Chemical compounds known for exhibiting high temperature superconductivity

Rare-earth barium copper oxide (ReBCO) is a family of chemical compounds known for exhibiting high-temperature superconductivity (HTS). ReBCO superconductors have the potential to sustain stronger magnetic fields than other superconductor materials. Due to their high critical temperature and critical magnetic field, this class of materials are proposed for use in technical applications where conventional low-temperature superconductors do not suffice. This includes magnetic confinement fusion reactors such as the ARC reactor, allowing a more compact and potentially more economical construction, and superconducting magnets to use in future particle accelerators to come after the Large Hadron Collider, which utilizes low-temperature superconductors.

References

  1. 1 2 3 Glowacki, B. A.; Nuttall, W. J.; Hanley, E.; Kennedy, L.; O'Flynn, D. (2015-02-01). "Hydrogen Cryomagnetics for Decentralised Energy Management and Superconductivity". Journal of Superconductivity and Novel Magnetism. 28 (2): 561–571. doi: 10.1007/s10948-014-2660-7 . hdl: 10344/7249 . ISSN   1557-1947. S2CID   56241493.
  2. 1 2 BA Glowacki and WJ Nuttall, Hydrogen as a Fuel and as a Coolant – from the superconductivity perspective, Journal of Energy Science, 1 (1) pp. 15-28, (2010) published by Wroclaw University of technology, Poland, available at:https://www.dbc.wroc.pl/dlibra/publication/5150/edition/4928/content accessed 11 February 2022.
  3. 1 2 Nuttall, William; Clarke, Richard; Glowacki, Bartek, eds. (2012-06-25). The Future of Helium as a Natural Resource. Routledge. doi:10.4324/9780203120675. ISBN   978-1-136-32273-0.
  4. Glowacki, B. A.; Nuttall, W. J.; Clarke, R. H. (2013). "Beyond the Helium Conundrum". IEEE Transactions on Applied Superconductivity. 23 (3): 0500113. Bibcode:2013ITAS...2300113G. doi:10.1109/TASC.2013.2244633. ISSN   1051-8223. S2CID   42843070.
  5. McDonald1, K.T. (2022-09-19). "Use of He Gas Cooled by Liquid Hydrogen with a 15-T Pulsed Copper Solenoid Magnet" (PDF). Retrieved 2022-09-19.{{cite web}}: CS1 maint: numeric names: authors list (link)
  6. Superconductivity - Wikipedia
  7. "Hydrogen | H (Element) - PubChem". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-02-11.
  8. Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. (1987-03-02). "Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure". Physical Review Letters. 58 (9): 908–910. Bibcode:1987PhRvL..58..908W. doi: 10.1103/PhysRevLett.58.908 . ISSN   0031-9007. PMID   10035069.
  9. "YBCO". www.ch.ic.ac.uk. Retrieved 2022-09-19.
  10. "High-temperature superconducting tape suitable for magnets at 50 teslas and beyond - MagLab". nationalmaglab.org. Retrieved 2022-02-11.
  11. 1 2 Glowacki, B A; Nuttall, W J (2008-02-01). "Assessment of liquid hydrogen cooled MgB2conductors for magnetically confined fusion". Journal of Physics: Conference Series. 97 (1): 012333. Bibcode:2008JPhCS..97a2333G. doi: 10.1088/1742-6596/97/1/012333 . ISSN   1742-6596. S2CID   250680208.
  12. Stautner, W.; Xu, M.; Mine, S.; Amm, K. (2014). "Hydrogen cooling options for MgB2-based superconducting systems". Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference - Cec. AIP Conference Proceedings. 1573 (1). Anchorage, Alaska, USA: 82–90. Bibcode:2014AIPC.1573...82S. doi:10.1063/1.4860686. PMC   9017651 . PMID   35444353.
  13. Nagamatsu, Jun; Nakagawa, Norimasa; Muranaka, Takahiro; Zenitani, Yuji; Akimitsu, Jun (March 2001). "Superconductivity at 39 K in magnesium diboride". Nature. 410 (6824): 63–64. Bibcode:2001Natur.410...63N. doi:10.1038/35065039. ISSN   0028-0836. PMID   11242039. S2CID   4388025.
  14. Kwang, Tan Seng (2013-03-29). "Boiling under Reduced Pressure". Physics Lens. Retrieved 2022-09-19.
  15. Fritz Herlach 1999 Rep. Prog. Phys. 62 859
  16. 1 2 WJ Nuttall and BA Glowacki, Viewpoint: Fusion Island, Nuclear Engineering International, 53, (648), July 2008, pp. 38-41
  17. W.J Nuttall, B.A. Glowacki and L. Bromberg, Fusion Island – Latest Considerations Concerning Magnetic Fusion, Hydrogen Cryomagnetics and Thermochemical Hydrogen Production, presented at conference Novel Aspects of Surfaces and Materials (NASM 3), 11–15 April 2010, Manchester, United Kingdom
  18. B. A. Głowacki, A. P. Finlayson, W. J. Nuttall, T. Janowski, Hydrogen as a fuel and as a coolant - from the superconductivity perspective, presented at: Electromagnetic devices and processes in environmental protection ELMECO-5 : 5th International Conference, Nałęczów, Poland, September 2005. Proceedings: Lublin : Wydawnictwo Drukarnia Liber Duo, 2005.- s. pp.173-185.
  19. Glowacki, Bartek A. (2006). "Prospects of Application of Superconductivity in Underground Transmission Lines and Levitating Trains". Advances in Science and Technology. Science and Engineering of Novel Superconductors V. 47: 246–255. doi:10.4028/www.scientific.net/AST.47.246. ISBN   978-3-03813-095-6. ISSN   1662-0356. S2CID   108518698.
  20. Bartek A. Glowacki, Chapter 16. Substituting hydrogen for helium in cryogenic applications, in WJ Nuttall, RH Clarke and BA Glowacki (editors), Future of Helium as a Natural Resource, Routledge (2012)
  21. 1 2 Nuttall, William J.; Bakenne, Adetokunboh T. (2020), Nuttall, William J.; Bakenne, Adetokunboh T. (eds.), "Hydrogen Cryomagnetics—A Physics-Based Innovation", Fossil Fuel Hydrogen: Technical, Economic and Environmental Potential, Cham: Springer International Publishing, pp. 101–108, doi:10.1007/978-3-030-30908-4_9, ISBN   978-3-030-30908-4, S2CID   209920736 , retrieved 2022-02-11
  22. 1 2 3 Nuttall, William J.; Bakenne, Adetokunboh T. (2020), Nuttall, William J.; Bakenne, Adetokunboh T. (eds.), "Hydrogen Infrastructures", Fossil Fuel Hydrogen: Technical, Economic and Environmental Potential, Cham: Springer International Publishing, pp. 69–77, doi:10.1007/978-3-030-30908-4_6, ISBN   978-3-030-30908-4, S2CID   241151242 , retrieved 2022-02-11
  23. SelectScience. "Helium shortage 2.0 and the alternatives for gas chromatography | SelectScience". www.selectscience.net. Retrieved 2022-02-11.
  24. Nuttall, William J.; Clarke, Richard H.; Glowacki, Bartek A. (2012). "Stop squandering helium". Nature. 485 (7400): 573–575. doi: 10.1038/485573a . ISSN   1476-4687. PMID   22660302. S2CID   10351068.
  25. "Hydrogen purity analysis for fuel cell vehicles | Vsl.nl". www.vsl.nl. Retrieved 2022-09-19.
  26. Ren, Peng; Pei, Pucheng; Li, Yuehua; Wu, Ziyao; Chen, Dongfang; Huang, Shangwei (2020-09-01). "Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions". Progress in Energy and Combustion Science. 80: 100859. Bibcode:2020PECS...8000859R. doi:10.1016/j.pecs.2020.100859. ISSN   0360-1285. S2CID   219934610.
  27. Mojarrad, Masih; Farhoudian, Sana; Mikheenko, Pavlo (January 2022). "Superconductivity and Hydrogen Economy: A Roadmap to Synergy". Energies. 15 (17) (published 2022-08-24): 6138. doi: 10.3390/en15176138 . hdl: 10852/100845 . ISSN   1996-1073.
  28. Nuttall, William (2004-05-28). "Fusion should put its energy into oil". The Engineer. Retrieved 2022-02-11.
  29. Nuttall, William; Glowacki, Bartek; Clarke, Richard (2005-10-31). "A trip to 'Fusion Island'". The Engineer. Retrieved 2022-02-11.
  30. William J Nuttall, Chapter 11: Commercial opportunities for nuclear fusion in William J. Nuttall, David Webbe-Wood, Satoshi Konishi, Shutaro Takeda (Editors) Commercialising Fusion Energy - how small businesses are transforming big science, IOPP Publishing, Bristol (2020)
  31. "Mind-boggling magnets could unlock plentiful power". BBC News. 2021-05-10. Retrieved 2022-02-15.
  32. Dezhin, D; Dezhina, I; Ilyasov, R (2020-06-01). "Superconducting Propulsion System with LH2 Cooling for All-Electric Aircraft". Journal of Physics: Conference Series. 1559 (1): 012143. Bibcode:2020JPhCS1559a2143D. doi: 10.1088/1742-6596/1559/1/012143 . ISSN   1742-6588. S2CID   225821526.
  33. "Airbus' Hydrogen Drive Will Materialize In Demonstrators | Aviation Week Network". aviationweek.com. Retrieved 2022-02-11.
  34. "Fully Superconducting Motor Prepares for Testing by Jody_Muelaner". Engineering.com. 20 August 2019. Retrieved 2022-02-11.
  35. Dezhin, Dmitry; Ilyasov, Roman (2022-01-10). "Development of fully superconducting 5 MW aviation generator with liquid hydrogen cooling". EUREKA: Physics and Engineering (1): 62–73. doi: 10.21303/2461-4262.2022.001771 . ISSN   2461-4262. S2CID   245887329.
  36. "HYBRIT. A new revolutionary steelmaking technology". SSAB. Retrieved 2022-09-19.
  37. Ulferts, A; Nacke, B (2008-10-29). "ALUHEAT - A superconducting approach of an aluminium billet heater" (PDF). Retrieved 2022-09-19.