Hydrolysate

Last updated

Hydrolysate refers to any product of hydrolysis. Protein hydrolysate has special application in sports medicine because its consumption allows amino acids to be absorbed by the body more rapidly than intact proteins, thus maximizing nutrient delivery to muscle tissues. [1] It is also used in the biotechnology industry as a supplement to cell cultures. [2] In the December 2013 edition of The International Journal of Food Science and Technology, hydrolysate was shown to be rich in L-aspartic acid and the necessary minerals manganese and selenium [3] [ unreliable source? ]

Notes

  1. Manninen, Anssi H., "PROTEIN HYDROLYSATES IN SPORTS AND EXERCISE: A BRIEF REVIEW", Journal of Sports Science and Medicine, Vol 3, p 60-63, (2004)
  2. Ummadi, M. and Curic-Bawden, M. "Use of Protein Hydrolysates in Industrial Starter Culture Fermentations." PROTEIN HYDROLYSATES IN BIOTECHNOLOGY, 2010, p 91-114
  3. "Chicken Liver Hydrolysate". 19 July 2015. Retrieved 19 July 2015.

Related Research Articles

Amino acid Organic compounds containing amine and carboxylic groups

Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. The key elements of an amino acid are carbon (C), hydrogen (H), oxygen (O), and nitrogen (N), although other elements are found in the side chains of certain amino acids. About 500 naturally occurring amino acids are known as of 1983 (though only 20 appear in the genetic code) and can be classified in many ways. They can be classified according to the core structural functional groups' locations as alpha- (α-), beta- (β-), gamma- (γ-) or delta- (δ-) amino acids; other categories relate to polarity, pH level, and side chain group type (aliphatic, acyclic, aromatic, containing hydroxyl or sulfur, etc.). In the form of proteins, amino acid residues form the second-largest component (water is the largest) of human muscles and other tissues. Beyond their role as residues in proteins, amino acids participate in a number of processes such as neurotransmitter transport and biosynthesis.

Gelatin Mixture of peptides and proteins derived from connective tissues of animals

Gelatin or gelatine is a translucent, colorless, flavorless food ingredient, commonly derived from collagen taken from animal body parts. It is brittle when dry and gummy when moist. It may also be referred to as hydrolyzed collagen, collagen hydrolysate, gelatine hydrolysate, hydrolyzed gelatine, and collagen peptides after it has undergone hydrolysis. It is commonly used as a gelling agent in food, beverages, medications, drug and vitamin capsules, photographic films and papers, and cosmetics.

Trypsin

Trypsin is a serine protease from the PA clan superfamily, found in the digestive system of many vertebrates, where it hydrolyzes proteins. Trypsin is formed in the small intestine when its proenzyme form, the trypsinogen produced by the pancreas, is activated. Trypsin cuts peptide chains mainly at the carboxyl side of the amino acids lysine or arginine. It is used for numerous biotechnological processes. The process is commonly referred to as trypsin proteolysis or trypsinisation, and proteins that have been digested/treated with trypsin are said to have been trypsinized. Trypsin was discovered in 1876 by Wilhelm Kühne and was named from the Ancient Greek word for rubbing since it was first isolated by rubbing the pancreas with glycerin.

Tyrosine Amino acid

L-Tyrosine or tyrosine or 4-hydroxyphenylalanine is one of the 20 standard amino acids that are used by cells to synthesize proteins. It is a non-essential amino acid with a polar side group. The word "tyrosine" is from the Greek tyrós, meaning cheese, as it was first discovered in 1846 by German chemist Justus von Liebig in the protein casein from cheese. It is called tyrosyl when referred to as a functional group or side chain. While tyrosine is generally classified as a hydrophobic amino acid, it is more hydrophilic than phenylalanine. It is encoded by the codons UAC and UAU in messenger RNA.

Frederick Sanger British biochemist

Frederick Sanger was a British biochemist who twice won the Nobel Prize in Chemistry, one of only two people to have done so in the same category, the fourth person overall with two Nobel Prizes, and the third person overall with two Nobel Prizes in the sciences. In 1958, he was awarded a Nobel Prize in Chemistry "for his work on the structure of proteins, especially that of insulin". In 1980, Walter Gilbert and Sanger shared half of the chemistry prize "for their contributions concerning the determination of base sequences in nucleic acids". The other half was awarded to Paul Berg "for his fundamental studies of the biochemistry of nucleic acids, with particular regard to recombinant DNA".

Whey Liquid remaining after milk has been curdled and strained

Whey is the liquid remaining after milk has been curdled and strained. It is a byproduct of the manufacture of cheese or casein and has several commercial uses. Sweet whey is a byproduct resulting from the manufacture of rennet types of hard cheese, like cheddar or Swiss cheese. Acid whey is a byproduct brought out during the making of acid types of dairy products, such as cottage cheese or strained yogurt.

Leroy Hood American biologist

Leroy "Lee" Edward Hood is an American biologist who has served on the faculties at the California Institute of Technology (Caltech) and the University of Washington. Hood has developed ground-breaking scientific instruments which made possible major advances in the biological sciences and the medical sciences. These include the first gas phase protein sequencer (1982), for determining the amino acids that make up a given protein; a DNA synthesizer (1983), to synthesize short sections of DNA; a peptide synthesizer (1984), to combine amino acids into longer peptides and short proteins; the first automated DNA sequencer (1986), to identify the order of nucleotides in DNA; ink-jet oligonucleotide technology for synthesizing DNA and nanostring technology for analyzing single molecules of DNA and RNA.

Monoclonal antibody Monospecific antibody that is made by identical immune cells that are all clones of a unique parent cell

A monoclonal antibody is an antibody made by cloning a unique white blood cell. All subsequent antibodies derived this way trace back to a unique parent cell.

Whey protein Protein supplement

Whey protein is a mixture of proteins isolated from whey, the liquid material created as a by-product of cheese production. The proteins consist of α-lactalbumin, β-lactoglobulin, serum albumin and immunoglobulins. Whey protein is commonly marketed as a dietary supplement, and various health claims have been attributed to it. A review published in 2010 in the European Food Safety Authority Journal concluded that the provided literature did not adequately support the proposed claims. For muscle growth, whey protein has been shown to be slightly better compared to other types of protein, such as casein or soy.

Bodybuilding supplements are dietary supplements commonly used by those involved in bodybuilding, weightlifting, mixed martial arts, and athletics for the purpose of facilitating an increase in lean body mass. The intent is to increase muscle, increase body weight, improve athletic performance, and for some sports, to simultaneously decrease percent body fat so as to create better muscle definition. Among the most widely used are high protein drinks, pre-workout blends, branched-chain amino acids (BCAA), glutamine, arginine, essential fatty acids, creatine, HMB, whey protein, ZMA and weight loss products. Supplements are sold either as single ingredient preparations or in the form of "stacks" – proprietary blends of various supplements marketed as offering synergistic advantages. While many bodybuilding supplements are also consumed by the general public the frequency of use will differ when used specifically by bodybuilders. One meta-analysis concluded that – for athletes participating in resistance exercise training and consuming protein supplements for an average of 13 weeks – total protein intake up to 1.6 g/kg of body weight per day would result in an increase in strength and fat-free mass, but that higher intakes would not further contribute.

Free fatty acid receptor 3

Free fatty acid receptor 3 (FFA3) is a G-protein coupled receptor that in humans is encoded by the FFAR3 gene.

Free fatty acid receptor 2

Free fatty acid receptor 2 (FFA2) is a G-protein coupled receptor encoded by the FFAR2 gene.

Single-cell proteins (SCP) or microbial proteins refer to edible unicellular microorganisms. The biomass or protein extract from pure or mixed cultures of algae, yeasts, fungi or bacteria may be used as an ingredient or a substitute for protein-rich foods, and is suitable for human consumption or as animal feeds. Industrial agriculture is marked by a high water footprint, high land use, biodiversity destruction, general environmental degradation and contributes to climate change by emission of a third of all greenhouse gases, production of SCP does not necessarily exhibit any of these serious drawbacks. As of today, SCP is commonly grown on agricultural waste products, and as such inherits the ecological footprint and water footprint of industrial agriculture. However, SCP may also be produced entirely independent of agricultural waste products through autotrophic growth. Thanks to the high diversity of microbial metabolism, autotrophic SCP provides several different modes of growth, versatile options of nutrients recycling, and a substantially increased efficiency compared to crops.

Long-chain fatty acid transport protein 4

Long-chain fatty acid transport protein 4 is a protein that in humans is encoded by the SLC27A4 gene. This membrane protein is also called FATP4 or ACSVL5. The purified protein shows enzyme activity, esterifying long and very long chain fatty acids with Coenzyme A. It is debated whether it is also a fatty acid transporter at the plasma membrane.

HIVEP2

Transcription factor HIVEP2 is a protein that in humans is encoded by the HIVEP2 gene.

Long-chain fatty acid transport protein 1

Long-chain fatty acid transport protein 1 (FATP1) is a protein that in humans is encoded by the SLC27A1 gene.

Fish hydrolysate, in its simplest form, is ground up fish transformed into a liquid phase, where the cleavage of molecular bonds occurs through various biological processes. Raw material choice; either whole fish or by-products, depends on the commercial sources of the fish. In some cases, the fillet portions are removed for human consumption, the remaining fish body is put into water and ground up. Some fish hydrolysate is ground more finely than others so more bone material is able to remain suspended. Enzymes may also be used to dissolve bones, scale and meat. If the larger chunks of bone and scales are screened out, calcium or mineral content may be lacking in the finished product form. If purchasing fish hydrolysate for agricultural applications, one should look at the label carefully for the concentration of mineral elements in the liquid. Some fish hydrolysates have been made into a dried product, increasing the potential for inclusion as an ingredient in other food or feed products. The oil is separated out in this process, which means the Omega 3 fatty acid would remain with the oil and not the hydrolysate.

CYP4F22

CYP4F22 is a protein that in humans is encoded by the CYP4F22 gene.

Fish protein powder (FPP) describes a food grade powder product designated primarily for human consumption applications. It differs significantly from fish meal products which are designated for animal feed applications. Fish protein powders have various sanitary processing, purity and functional characteristics which establish them as human food ingredients. Production plants registered for the USA market are located in Peru and France.

<i>Chlorella vulgaris</i> Species of green alga

Chlorella vulgaris is a species of green microalga in the Division Chlorophyta. It is mainly used as a dietary supplement or protein-rich food additive in Japan.