Hydyne

Last updated

Hydyne is a mixture of 60% unsymmetrical dimethylhydrazine (UDMH) and 40% diethylenetriamine (DETA), developed in 1957 at Rocketdyne for use in liquid-fuel rockets. [1] [2] [3] Hydyne was used as the fuel for the first stage of the Juno I rocket that launched Explorer 1, the first successful satellite launch conducted by the United States.

Contents

Improved performance

In 1955 Wernher von Braun, employed by the U.S. Army, calculated his Redstone rocket could launch a satellite into orbit if its performance could be improved. A contract to develop a more powerful propellant was awarded to the Redstone's main stage builder, Rocketdyne. The contract required the replacement of the PGM-11 Redstone fuel (including 25% water and 75% ethyl alcohol) with a compound that would boost the rocket's performance by at least 8%. Mary Sherman Morgan was assigned to head up a small team of engineers to find a solution. [4] [5]

The Jupiter-C and Juno I rockets used the same first-stage engines as the missile, but needed more thrust due to the increased size of the payload. With the use of the newly developed Hydyne, composed of a blend of 60% unsymmetrical dimethylhydrazine (UDMH) and 40% diethylenetriamine (DETA), [3] the Jupiter-C and Juno I engines gained a 12% increase in thrust and higher specific impulse. [6] The resulting fuel was more powerful than alcohol, but also more toxic. [7] The first Hydyne-powered Redstone R&D flight took place on November 29, 1956. [8] After two Jupiter C and six Juno I launches [9] including the launch of America's first satellite, Explorer I), Hydyne was discontinued in favor of higher performing fuels.

Unofficial name

'Bagel' was the whimsical name suggested by Morgan, who engineered the Hydyne-LOX (Liquid OXygen) propellant combination used by North American Aviation in their early U.S. rocket designs of the incipient space race. Morgan was considered a rocketry pioneer as she was the only female technical analyst employed by NAA in Downey, California. [10] Morgan suggested calling her new fuel invention 'Bagel', allowing the Redstone propellant combination to be then called 'Bagel and LOX' (a tongue in cheek reference to the brined salmon, lox, which is served with bagels and cream cheese). [1] [2] Her suggested name for the new fuel was not accepted, and 'Hydyne' was chosen instead by the U.S. Army.

The creation of Hydyne was dramatized in a stage play entitled Rocket Girl which chronicles the life of Mary Sherman Morgan, Hydyne's inventor. The play was written by Morgan's son, George D. Morgan and ran at the California Institute of Technology in November, 2008, . [2] The story is also told inRocket Girl: The Story of Mary Sherman Morgan, America's First Female Rocket Scientist also by George D. Morgan. [4]

Related Research Articles

<span class="mw-page-title-main">Solid-propellant rocket</span> Rocket with a motor that uses solid propellants

A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder; The inception of gunpowder rockets in warfare can be credited to ancient Chinese ingenuity, and in the 13th century, the Mongols played a pivotal role in facilitating their westward adoption.

<span class="mw-page-title-main">Jupiter-C</span> Part of the Redstone rocket family

The Jupiter-C was an American research and development vehicle developed from the Jupiter-A. Jupiter-C was used for three uncrewed sub-orbital spaceflights in 1956 and 1957 to test re-entry nosecones that were later to be deployed on the more advanced PGM-19 Jupiter mobile missile. The recovered nosecone was displayed in the Oval Office as part of President Dwight D. Eisenhower's televised speech on November 7, 1957.

<span class="mw-page-title-main">Titan (rocket family)</span> Family of launch vehicles used in U.S. Air Force and space programs (1959–2005)

Titan was a family of United States expendable rockets used between 1959 and 2005. The Titan I and Titan II were part of the US Air Force's intercontinental ballistic missile (ICBM) fleet until 1987. The space launch vehicle versions contributed the majority of the 368 Titan launches, including all the Project Gemini crewed flights of the mid-1960s. Titan vehicles were also used to lift US military payloads as well as civilian agency reconnaissance satellites and to send interplanetary scientific probes throughout the Solar System.

<span class="mw-page-title-main">Hypergolic propellant</span> Type of rocket engine fuel

A hypergolic propellant is a rocket propellant combination used in a rocket engine, whose components spontaneously ignite when they come into contact with each other.

Unsymmetrical dimethylhydrazine (UDMH; 1,1-dimethylhydrazine, heptyl or codenamed Geptil) is a chemical compound with the formula H2NN(CH3)2 that is used as a rocket propellant. It is a colorless liquid, with a sharp, fishy, ammonia-like smell typical for organic amines. Samples turn yellowish on exposure to air and absorb oxygen and carbon dioxide. It is miscible with water, ethanol, and kerosene. In concentration between 2.5% and 95% in air, its vapors are flammable. It is not sensitive to shock. Symmetrical dimethylhydrazine (1,2-dimethylhydrazine) is also known but is not as useful. UDMH can be oxidized in air to form many different substances, including toxic ones.

<span class="mw-page-title-main">PGM-11 Redstone</span> American short-range ballistic missile

The PGM-11 Redstone was the first large American ballistic missile. A short-range ballistic missile (SRBM), it was in active service with the United States Army in West Germany from June 1958 to June 1964 as part of NATO's Cold War defense of Western Europe. It was the first US missile to carry a live nuclear warhead, in the 1958 Pacific Ocean weapons test, Hardtack Teak.

<span class="mw-page-title-main">Rocketdyne</span> American rocket engine design and production company

Rocketdyne was an American rocket engine design and production company headquartered in Canoga Park, in the western San Fernando Valley of suburban Los Angeles, in southern California.

<span class="mw-page-title-main">Liquid-propellant rocket</span> Rocket engine that uses liquid fuels and oxidizers

A liquid-propellant rocket or liquid rocket utilizes a rocket engine burning liquid propellants. (Alternate approaches use gaseous or solid propellants.) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse (Isp). This allows the volume of the propellant tanks to be relatively low.

Aerozine 50 is a 50:50 mix by weight of hydrazine and unsymmetrical dimethylhydrazine (UDMH), originally developed in the late 1950s by Aerojet General Corporation as a storable, high-energy, hypergolic fuel for the Titan II ICBM rocket engines. Aerozine continues in wide use as a rocket fuel, typically with dinitrogen tetroxide as the oxidizer, with which it is hypergolic. Aerozine 50 is more stable than hydrazine alone, and has a higher density and boiling point than UDMH alone.

The Saturn I was a rocket designed as the United States' first medium lift launch vehicle for up to 20,000-pound (9,100 kg) low Earth orbit payloads. The rocket's first stage was built as a cluster of propellant tanks engineered from older rocket tank designs, leading critics to jokingly refer to it as "Cluster's Last Stand". Its development was taken over from the Advanced Research Projects Agency (ARPA) in 1958 by the newly formed civilian NASA. Its design proved sound and flexible. It was successful in initiating the development of liquid hydrogen-fueled rocket propulsion, launching the Pegasus satellites, and flight verification of the Apollo command and service module launch phase aerodynamics. Ten Saturn I rockets were flown before it was replaced by the heavy lift derivative Saturn IB, which used a larger, higher total impulse second stage and an improved guidance and control system. It also led the way to development of the super-heavy lift Saturn V which carried the first men to landings on the Moon in the Apollo program.

<span class="mw-page-title-main">PGM-19 Jupiter</span> Medium-range ballistic missile (MRBM)

The PGM-19 Jupiter was the first nuclear armed, medium-range ballistic missile (MRBM) of the United States Air Force (USAF). It was a liquid-propellant rocket using RP-1 fuel and LOX oxidizer, with a single Rocketdyne LR79-NA rocket engine producing 667 kilonewtons (150,000 lbf) of thrust. It was armed with the 1.44 megatons of TNT (6.0 PJ) W49 nuclear warhead. The prime contractor was the Chrysler Corporation.

<span class="mw-page-title-main">Rocketdyne H-1</span> American kerolox rocket engine

The Rocketdyne H-1 was a 205,000 lbf (910 kN) thrust liquid-propellant rocket engine burning LOX and RP-1. The H-1 was developed for use in the S-I and S-IB first stages of the Saturn I and Saturn IB rockets, respectively, where it was used in clusters of eight engines. After the Apollo program, surplus H-1 engines were rebranded and reworked as the Rocketdyne RS-27 engine with first usage on the Delta 2000 series in 1974. RS-27 engines continued to be used up until 1992 when the first version of the Delta II, Delta 6000, was retired. The RS-27A variant, boasting slightly upgraded performance, was also used on the later Delta II and Delta III rockets, with the former flying until 2018.

The highest specific impulse chemical rockets use liquid propellants. They can consist of a single chemical or a mix of two chemicals, called bipropellants. Bipropellants can further be divided into two categories; hypergolic propellants, which ignite when the fuel and oxidizer make contact, and non-hypergolic propellants which require an ignition source.

<span class="mw-page-title-main">Gas-generator cycle</span> Rocket engine operation method

The gas-generator cycle, also called open cycle, is one of the most commonly used power cycles in bipropellant liquid rocket engines. Part of the unburned propellant is burned in a gas generator and the resulting hot gas is used to power the propellant pumps before being exhausted overboard, and lost. Because of this loss, this type of engine is termed open cycle.

<span class="mw-page-title-main">Diethylenetriamine</span> Chemical compound

Diethylenetriamine (abbreviated Dien or DETA) and also known as 2,2’-Iminodi(ethylamine)) is an organic compound with the formula HN(CH2CH2NH2)2. This colourless hygroscopic liquid is soluble in water and polar organic solvents, but not simple hydrocarbons. Diethylenetriamine is structural analogue of diethylene glycol. Its chemical properties resemble those for ethylene diamine, and it has similar uses. It is a weak base and its aqueous solution is alkaline. DETA is a byproduct of the production of ethylenediamine from ethylene dichloride.

<span class="mw-page-title-main">Milton Rosen</span>

Milton William Rosen was a United States Navy engineer and project manager in the US space program between the end of World War II and the early days of the Apollo Program. He led development of the Viking and Vanguard rockets, and was influential in the critical decisions early in NASA's history that led to the definition of the Saturn rockets, which were central to the eventual success of the American Moon landing program. He died of prostate cancer in 2014.

<span class="mw-page-title-main">Redstone (rocket family)</span> Class of ballistic missile

The Redstone family of rockets consisted of a number of American ballistic missiles, sounding rockets and expendable launch vehicles operational during the 1950s and 1960s. The first member of the Redstone family was the PGM-11 Redstone missile, from which all subsequent variations of the Redstone were derived. The Juno 1 version of the Redstone launched Explorer 1, the first U.S. orbital satellite in 1958 and the Mercury-Redstone variation carried the first two U.S. astronauts into space in 1961. The rocket was named for the Redstone Arsenal in Huntsville, Alabama where it was developed.

The Mercury-Redstone Launch Vehicle, designed for NASA's Project Mercury, was the first American crewed space booster. It was used for six sub-orbital Mercury flights from 1960–1961; culminating with the launch of the first, and 11 weeks later, the second American in space. The four subsequent Mercury human spaceflights used the more powerful Atlas booster to enter low Earth orbit.

Mary Sherman Morgan was a U.S. rocket fuel scientist credited with the invention of the liquid fuel Hydyne in 1957, which powered the Jupiter-C rocket that boosted the United States' first satellite, Explorer 1.

<span class="mw-page-title-main">S-I</span> First stage of the Saturn I rocket

The S-I was the first stage of the Saturn I rocket used by NASA for the Apollo program.

References

  1. 1 2 Morgan, George. It was created by Mary Sherman Morgan. America's First Lady of Rocketry, Caltech News, California Institute of Technology, Vol.42, No.1.
  2. 1 2 3 Lerner, Preston, "Soundings: She Put The High In Hydyne". Air & Space Smithsonian Magazine, March 2009, Vol.23, No.6, pp.10, ISSN 0886-2257.
  3. 1 2 NASA. The Mercury-Redstone Project, p. 2-2.
  4. 1 2 Rocket Girl: The Story of Mary Sherman Morgan, America's First Female Rocket Scientist . Prometheus Books. July 2013. Retrieved 5 January 2019.
  5. Missiles and Rockets. American Aviation Publications. January 1958. Retrieved 7 June 2013. Nicknamed Hydyne
  6. George Paul Sutton (2005). History of liquid propellant rocket engines. American Institute of Aeronautics and Astronautics. p. 413. ISBN   1-56347-649-5.
  7. NASA. The Mercury-Redstone Project, p. 3-2, 4-42.
  8. History of the Redstone Missile System, p. 60
  9. History of the Redstone Missile System, p. 166
  10. "America's First Lady of Rocketry" (PDF). California Institute of Technology. 2008. Retrieved 2013-06-05.