Hyperbolization theorem

Last updated

In geometry, Thurston's geometrization theorem or hyperbolization theorem implies that closed atoroidal Haken manifolds are hyperbolic, and in particular satisfy the Thurston conjecture.

Contents

Statement

One form of Thurston's geometrization theorem states: If M is a compact irreducible atoroidal Haken manifold whose boundary has zero Euler characteristic, then the interior of M has a complete hyperbolic structure of finite volume.

The Mostow rigidity theorem implies that if a manifold of dimension at least 3 has a hyperbolic structure of finite volume, then it is essentially unique.

The conditions that the manifold M should be irreducible and atoroidal are necessary, as hyperbolic manifolds have these properties. However the condition that the manifold be Haken is unnecessarily strong. Thurston's hyperbolization conjecture states that a closed irreducible atoroidal 3-manifold with infinite fundamental group is hyperbolic, and this follows from Perelman's proof of the Thurston geometrization conjecture.

Manifolds with boundary

Thurston (1982 , 2.3) showed that if a compact 3 manifold is prime, homotopically atoroidal, and has non-empty boundary, then it has a complete hyperbolic structure unless it is homeomorphic to a certain manifold (T2×[0,1])/Z/2Z with boundary T2.

A hyperbolic structure on the interior of a compact orientable 3-manifold has finite volume if and only if all boundary components are tori, except for the manifold T2×[0,1] which has a hyperbolic structure but none of finite volume ( Thurston 1982 , p. 359).

Proofs

Thurston never published a complete proof of his theorem for reasons that he explained in ( Thurston 1994 ), though parts of his argument are contained in Thurston ( 1986 , 1998a , 1998b ). Wall (1984) and Morgan (1984) gave summaries of Thurston's proof. Otal (1996) gave a proof in the case of manifolds that fiber over the circle, and Otal (1998) and Kapovich (2009) gave proofs for the generic case of manifolds that do not fiber over the circle. Thurston's geometrization theorem also follows from Perelman's proof using Ricci flow of the more general Thurston geometrization conjecture.

Manifolds that fiber over the circle

Thurston's original argument for this case was summarized by Sullivan (1981). Otal (1996) gave a proof in the case of manifolds that fiber over the circle.

Thurston's geometrization theorem in this special case states that if M is a 3-manifold that fibers over the circle and whose monodromy is a pseudo-Anosov diffeomorphism, then the interior of M has a complete hyperbolic metric of finite volume.

Manifolds that do not fiber over the circle

Otal (1998) and Kapovich (2009) gave proofs of Thurston's theorem for the generic case of manifolds that do not fiber over the circle.

The idea of the proof is to cut a Haken manifold M along an incompressible surface, to obtain a new manifold N. By induction one assumes that the interior of N has a hyperbolic structure, and the problem is to modify it so that it can be extended to the boundary of N and glued together. Thurston showed that this follows from the existence of a fixed point for a map of Teichmuller space called the skinning map. The core of the proof of the geometrization theorem is to prove that if N is not an interval bundle over a surface and M is an atoroidal then the skinning map has a fixed point. (If N is an interval bundle then the skinning map has no fixed point, which is why one needs a separate argument when M fibers over the circle.) McMullen (1990) gave a new proof of the existence of a fixed point of the skinning map.

Related Research Articles

<span class="mw-page-title-main">William Thurston</span> American mathematician

William Paul Thurston was an American mathematician. He was a pioneer in the field of low-dimensional topology and was awarded the Fields Medal in 1982 for his contributions to the study of 3-manifolds.

<span class="mw-page-title-main">Figure-eight knot (mathematics)</span> Unique knot with a crossing number of four

In knot theory, a figure-eight knot is the unique knot with a crossing number of four. This makes it the knot with the third-smallest possible crossing number, after the unknot and the trefoil knot. The figure-eight knot is a prime knot.

In mathematics, Thurston's geometrization conjecture states that each of certain three-dimensional topological spaces has a unique geometric structure that can be associated with it. It is an analogue of the uniformization theorem for two-dimensional surfaces, which states that every simply connected Riemann surface can be given one of three geometries . In three dimensions, it is not always possible to assign a single geometry to a whole topological space. Instead, the geometrization conjecture states that every closed 3-manifold can be decomposed in a canonical way into pieces that each have one of eight types of geometric structure. The conjecture was proposed by William Thurston (1982), and implies several other conjectures, such as the Poincaré conjecture and Thurston's elliptization conjecture.

In mathematics, the JSJ decomposition, also known as the toral decomposition, is a topological construct given by the following theorem:

In mathematics, a Haken manifold is a compact, P²-irreducible 3-manifold that is sufficiently large, meaning that it contains a properly embedded two-sided incompressible surface. Sometimes one considers only orientable Haken manifolds, in which case a Haken manifold is a compact, orientable, irreducible 3-manifold that contains an orientable, incompressible surface.

<span class="mw-page-title-main">Low-dimensional topology</span> Branch of topology

In mathematics, low-dimensional topology is the branch of topology that studies manifolds, or more generally topological spaces, of four or fewer dimensions. Representative topics are the structure theory of 3-manifolds and 4-manifolds, knot theory, and braid groups. This can be regarded as a part of geometric topology. It may also be used to refer to the study of topological spaces of dimension 1, though this is more typically considered part of continuum theory.

<span class="mw-page-title-main">3-manifold</span> Mathematical space

In mathematics, a 3-manifold is a topological space that locally looks like a three-dimensional Euclidean space. A 3-manifold can be thought of as a possible shape of the universe. Just as a sphere looks like a plane to a small enough observer, all 3-manifolds look like our universe does to a small enough observer. This is made more precise in the definition below.

In mathematics, more precisely in topology and differential geometry, a hyperbolic 3-manifold is a manifold of dimension 3 equipped with a hyperbolic metric, that is a Riemannian metric which has all its sectional curvatures equal to −1. It is generally required that this metric be also complete: in this case the manifold can be realised as a quotient of the 3-dimensional hyperbolic space by a discrete group of isometries.

In mathematics, an atoroidal 3-manifold is one that does not contain an essential torus. There are two major variations in this terminology: an essential torus may be defined geometrically, as an embedded, non-boundary parallel, incompressible torus, or it may be defined algebraically, as a subgroup of its fundamental group that is not conjugate to a peripheral subgroup. The terminology is not standardized, and different authors require atoroidal 3-manifolds to satisfy certain additional restrictions. For instance:

<span class="mw-page-title-main">Hyperbolic manifold</span> Space where every point locally resembles a hyperbolic space

In mathematics, a hyperbolic manifold is a space where every point looks locally like hyperbolic space of some dimension. They are especially studied in dimensions 2 and 3, where they are called hyperbolic surfaces and hyperbolic 3-manifolds, respectively. In these dimensions, they are important because most manifolds can be made into a hyperbolic manifold by a homeomorphism. This is a consequence of the uniformization theorem for surfaces and the geometrization theorem for 3-manifolds proved by Perelman.

In mathematics, Thurston's classification theorem characterizes homeomorphisms of a compact orientable surface. William Thurston's theorem completes the work initiated by Jakob Nielsen (1944).

In the mathematical subfield of 3-manifolds, the virtually fibered conjecture, formulated by American mathematician William Thurston, states that every closed, irreducible, atoroidal 3-manifold with infinite fundamental group has a finite cover which is a surface bundle over the circle.

In topology, an area of mathematics, the virtually Haken conjecture states that every compact, orientable, irreducible three-dimensional manifold with infinite fundamental group is virtually Haken. That is, it has a finite cover that is a Haken manifold.

In mathematics, the 2π theorem of Gromov and Thurston states a sufficient condition for Dehn filling on a cusped hyperbolic 3-manifold to result in a negatively curved 3-manifold.

James W. Cannon is an American mathematician working in the areas of low-dimensional topology and geometric group theory. He was an Orson Pratt Professor of Mathematics at Brigham Young University.

In hyperbolic geometry, the ending lamination theorem, originally conjectured by William Thurston (1982), states that hyperbolic 3-manifolds with finitely generated fundamental groups are determined by their topology together with certain "end invariants", which are geodesic laminations on some surfaces in the boundary of the manifold.

In hyperbolic geometry, Thurston's double limit theorem gives condition for a sequence of quasi-Fuchsian groups to have a convergent subsequence. It was introduced in Thurston and is a major step in Thurston's proof of the hyperbolization theorem for the case of manifolds that fiber over the circle.

In geometric group theory, the Rips machine is a method of studying the action of groups on R-trees. It was introduced in unpublished work of Eliyahu Rips in about 1991.

Albert Marden is an American mathematician, specializing in complex analysis and hyperbolic geometry.

References