In graph theory, the hypergraph removal lemma states that when a hypergraph contains few copies of a given sub-hypergraph, then all of the copies can be eliminated by removing a small number of hyperedges. It is a generalization of the graph removal lemma. The special case in which the graph is a tetrahedron is known as the tetrahedron removal lemma. It was first proved by Nagle, Rödl, Schacht and Skokan [1] and, independently, by Gowers. [2]
The hypergraph removal lemma can be used to prove results such as Szemerédi's theorem [1] and the multi-dimensional Szemerédi theorem. [1]
The hypergraph removal lemma states that for any , there exists such that for any -uniform hypergraph with vertices the following is true: if is any -vertex -uniform hypergraph with at most subgraphs isomorphic to , then it is possible to eliminate all copies of from by removing at most hyperedges from .
An equivalent formulation is that, for any graph with copies of , we can eliminate all copies of from by removing hyperedges.
The high level idea of the proof is similar to that of graph removal lemma. We prove a hypergraph version of Szemerédi's regularity lemma (partition hypergraphs into pseudorandom blocks) and a counting lemma (estimate the number of hypergraphs in an appropriate pseudorandom block). The key difficulty in the proof is to define the correct notion of hypergraph regularity. There were multiple attempts [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] to define "partition" and "pseudorandom (regular) blocks" in a hypergraph, but none of them are able to give a strong counting lemma. The first correct definition of Szemerédi's regularity lemma for general hypergraphs is given by Rödl et al. [1]
In Szemerédi's regularity lemma, the partitions are performed on vertices (1-hyperedge) to regulate edges (2-hyperedge). However, for , if we simply regulate -hyperedges using only 1-hyperedge, we will lose information of all -hyperedges in the middle where , and fail to find a counting lemma. [13] The correct version has to partition -hyperedges in order to regulate -hyperedges. To gain more control of the -hyperedges, we can go a level deeper and partition on -hyperedges to regulate them, etc. In the end, we will reach a complex structure of regulating hyperedges.
For example, we demonstrate an informal 3-hypergraph version of Szemerédi's regularity lemma, first given by Frankl and Rödl. [14] Consider a partition of edges such that for most triples there are a lot of triangles on top of We say that is "pseudorandom" in the sense that for all subgraphs with not too few triangles on top of we have
We then subsequently define a regular partition as a partition in which the triples of parts that are not regular constitute at most an fraction of all triples of parts in the partition.
In addition to this, we need to further regularize via a partition of the vertex set. As a result, we have the total data of hypergraph regularity as follows:
After proving the hypergraph regularity lemma, we can prove a hypergraph counting lemma. The rest of proof proceeds similarly to that of Graph removal lemma.
Let be the size of the largest subset of that does not contain a length arithmetic progression. Szemerédi's theorem states that, for any constant . The high level idea of the proof is that, we construct a hypergraph from a subset without any length arithmetic progression, then use graph removal lemma to show that this graph cannot have too many hyperedges, which in turn shows that the original subset cannot be too big.
Let be a subset that does not contain any length arithmetic progression. Let be a large enough integer. We can think of as a subset of . Clearly, if doesn't have length arithmetic progression in , it also doesn't have length arithmetic progression in .
We will construct a -partite -uniform hypergraph from with parts , all of which are element vertex sets indexed by . For each , we add a hyperedge among vertices if and only if Let be the complete -partite -uniform hypergraph. If contains an isomorphic copy of with vertices , then for any . However, note that is a length arithmetic progression with common difference . Since has no length arithmetic progression, it must be the case that , so .
Thus, for each hyperedge , we can find a unique copy of that this edge lies in by finding . The number of copies of in equals . Therefore, by the hypergraph removal lemma, we can remove edges to eliminate all copies of in . Since every hyperedge of is in a unique copy of , to eliminate all copies of in , we need to remove at least edges. Thus, .
The number of hyperedges in is , which concludes that .
This method usually does not give a good quantitative bound, since the hidden constants in hypergraph removal lemma involves the inverse Ackermann function. For a better quantitive bound, Leng, Sah, and Sawhney proved that for some constant depending on . [15] It is the best bound for so far.
In combinatorics, Ramsey's theorem, in one of its graph-theoretic forms, states that one will find monochromatic cliques in any edge labelling (with colours) of a sufficiently large complete graph. To demonstrate the theorem for two colours (say, blue and red), let r and s be any two positive integers. Ramsey's theorem states that there exists a least positive integer R(r, s) for which every blue-red edge colouring of the complete graph on R(r, s) vertices contains a blue clique on r vertices or a red clique on s vertices. (Here R(r, s) signifies an integer that depends on both r and s.)
In mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices.
Extremal graph theory is a branch of combinatorics, itself an area of mathematics, that lies at the intersection of extremal combinatorics and graph theory. In essence, extremal graph theory studies how global properties of a graph influence local substructure. Results in extremal graph theory deal with quantitative connections between various graph properties, both global and local, and problems in extremal graph theory can often be formulated as optimization problems: how big or small a parameter of a graph can be, given some constraints that the graph has to satisfy? A graph that is an optimal solution to such an optimization problem is called an extremal graph, and extremal graphs are important objects of study in extremal graph theory.
In arithmetic combinatorics, Szemerédi's theorem is a result concerning arithmetic progressions in subsets of the integers. In 1936, Erdős and Turán conjectured that every set of integers A with positive natural density contains a k-term arithmetic progression for every k. Endre Szemerédi proved the conjecture in 1975.
In extremal graph theory, Szemerédi’s regularity lemma states that a graph can be partitioned into a bounded number of parts so that the edges between parts are regular. The lemma shows that certain properties of random graphs can be applied to dense graphs like counting the copies of a given subgraph within graphs. Endre Szemerédi proved the lemma over bipartite graphs for his theorem on arithmetic progressions in 1975 and for general graphs in 1978. Variants of the lemma use different notions of regularity and apply to other mathematical objects like hypergraphs.
In extremal graph theory, the Erdős–Stone theorem is an asymptotic result generalising Turán's theorem to bound the number of edges in an H-free graph for a non-complete graph H. It is named after Paul Erdős and Arthur Stone, who proved it in 1946, and it has been described as the “fundamental theorem of extremal graph theory”.
Property testing is a field of theoretical computer science, concerned with the design of super-fast algorithms for approximate decision making, where the decision refers to properties or parameters of huge objects.
In combinatorial mathematics, Baranyai's theorem deals with the decompositions of complete hypergraphs.
In graph theory and statistics, a graphon is a symmetric measurable function , that is important in the study of dense graphs. Graphons arise both as a natural notion for the limit of a sequence of dense graphs, and as the fundamental defining objects of exchangeable random graph models. Graphons are tied to dense graphs by the following pair of observations: the random graph models defined by graphons give rise to dense graphs almost surely, and, by the regularity lemma, graphons capture the structure of arbitrary large dense graphs.
In arithmetic combinatorics, the corners theorem states that for every , for large enough , any set of at least points in the grid contains a corner, i.e., a triple of points of the form with . It was first proved by Miklós Ajtai and Endre Szemerédi in 1974 using Szemerédi's theorem. In 2003, József Solymosi gave a short proof using the triangle removal lemma.
In graph theory, the graph removal lemma states that when a graph contains few copies of a given subgraph, then all of the copies can be eliminated by removing a small number of edges. The special case in which the subgraph is a triangle is known as the triangle removal lemma.
In combinatorial mathematics and extremal graph theory, the Ruzsa–Szemerédi problem or (6,3)-problem asks for the maximum number of edges in a graph in which every edge belongs to a unique triangle. Equivalently it asks for the maximum number of edges in a balanced bipartite graph whose edges can be partitioned into a linear number of induced matchings, or the maximum number of triples one can choose from points so that every six points contain at most two triples. The problem is named after Imre Z. Ruzsa and Endre Szemerédi, who first proved that its answer is smaller than by a slowly-growing factor.
In graph theory, a locally linear graph is an undirected graph in which every edge belongs to exactly one triangle. Equivalently, for each vertex of the graph, its neighbors are each adjacent to exactly one other neighbor, so the neighbors can be paired up into an induced matching. Locally linear graphs have also been called locally matched graphs. Their triangles form the hyperedges of triangle-free 3-uniform linear hypergraphs and the blocks of certain partial Steiner triple systems, and the locally linear graphs are exactly the Gaifman graphs of these hypergraphs or partial Steiner systems.
Roth's theorem on arithmetic progressions is a result in additive combinatorics concerning the existence of arithmetic progressions in subsets of the natural numbers. It was first proven by Klaus Roth in 1953. Roth's theorem is a special case of Szemerédi's theorem for the case .
In graph theory, a matching in a hypergraph is a set of hyperedges, in which every two hyperedges are disjoint. It is an extension of the notion of matching in a graph.
In the mathematical field of graph theory, Hall-type theorems for hypergraphs are several generalizations of Hall's marriage theorem from graphs to hypergraphs. Such theorems were proved by Ofra Kessler, Ron Aharoni, Penny Haxell, Roy Meshulam, and others.
In graph theory, perfect matching in high-degree hypergraphs is a research avenue trying to find sufficient conditions for existence of a perfect matching in a hypergraph, based only on the degree of vertices or subsets of them.
In mathematics, the hypergraph regularity method is a powerful tool in extremal graph theory that refers to the combined application of the hypergraph regularity lemma and the associated counting lemma. It is a generalization of the graph regularity method, which refers to the use of Szemerédi's regularity and counting lemmas.
The blow-up lemma, proved by János Komlós, Gábor N. Sárközy, and Endre Szemerédi in 1997, is an important result in extremal graph theory, particularly within the context of the regularity method. It states that the regular pairs in the statement of Szemerédi's regularity lemma behave like complete bipartite graphs in the context of embedding spanning graphs of bounded degree.
The method of (hypergraph) containers is a powerful tool that can help characterize the typical structure and/or answer extremal questions about families of discrete objects with a prescribed set of local constraints. Such questions arise naturally in extremal graph theory, additive combinatorics, discrete geometry, coding theory, and Ramsey theory; they include some of the most classical problems in the associated fields.