IBM WebSphere MQ

Last updated

IBM MQ is a family of network message-oriented middleware products that IBM launched in December 1993. It was originally called MQSeries (for "Message Queue"), and was renamed WebSphere MQ in 2002 to join the suite of WebSphere products. In April 2014, it was renamed IBM MQ. The products that are included in the MQ family are IBM MQ, IBM MQ Advanced, IBM MQ Appliance, IBM MQ for z/OS, and IBM MQ on IBM Cloud.

Computer network collection of autonomous computers interconnected by a single technology

A computer network is a digital telecommunications network which allows nodes to share resources. In computer networks, computing devices exchange data with each other using connections between nodes. These data links are established over cable media such as wires or optic cables, or wireless media such as Wi-Fi.

Message-oriented middleware (MOM) is software or hardware infrastructure supporting sending and receiving messages between distributed systems. MOM allows application modules to be distributed over heterogeneous platforms and reduces the complexity of developing applications that span multiple operating systems and network protocols. The middleware creates a distributed communications layer that insulates the application developer from the details of the various operating systems and network interfaces. APIs that extend across diverse platforms and networks are typically provided by MOM.

IBM American multinational technology and consulting corporation

International Business Machines Corporation (IBM) is an American multinational information technology company headquartered in Armonk, New York, with operations in over 170 countries. The company began in 1911, founded in Endicott, New York, as the Computing-Tabulating-Recording Company (CTR) and was renamed "International Business Machines" in 1924.

Contents

MQ allows independent and potentially non-concurrent applications on a distributed system to securely communicate with each other. MQ is available on a large number of platforms (both IBM and non-IBM), including z/OS (mainframe), OS/400 (IBM System i or AS/400), Transaction Processing Facility, UNIX (AIX, HP-UX, Solaris), HP NonStop, OpenVMS, Linux, OS 2200, and Microsoft Windows.

Distributed computing is a field of computer science that studies distributed systems. A distributed system is a system whose components are located on different networked computers, which communicate and coordinate their actions by passing messages to one another. The components interact with one another in order to achieve a common goal. Three significant characteristics of distributed systems are: concurrency of components, lack of a global clock, and independent failure of components. Examples of distributed systems vary from SOA-based systems to massively multiplayer online games to peer-to-peer applications.

z/OS 64-bit operating system for IBM mainframes

z/OS is a 64-bit operating system for IBM mainframes, produced by IBM. It derives from and is the successor to OS/390, which in turn followed a string of MVS versions. Like OS/390, z/OS combines a number of formerly separate, related products, some of which are still optional. z/OS offers the attributes of modern operating systems but also retains much of the functionality originating in the 1960s and each subsequent decade that is still found in daily use. z/OS was first introduced in October 2000.

Mainframe computer computers used primarily by corporate and governmental organizations

Mainframe computers or mainframes are computers used primarily by large organizations for critical applications; bulk data processing, such as census, industry and consumer statistics, enterprise resource planning; and transaction processing. They are larger and have more processing power than some other classes of computers: minicomputers, servers, workstations, and personal computers.

MQ Components

The core components of MQ are:

Binary file computer file encoded in binary form

A binary file is a computer file that is not a text file. The term "binary file" is often used as a term meaning "non-text file". Many binary file formats contain parts that can be interpreted as text; for example, some computer document files containing formatted text, such as older Microsoft Word document files, contain the text of the document but also contain formatting information in binary form.

ASCII American computer character encoding

ASCII, abbreviated from American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. Most modern character-encoding schemes are based on ASCII, although they support many additional characters.

Extended Binary Coded Decimal Interchange Code is an eight-bit character encoding used mainly on IBM mainframe and IBM midrange computer operating systems. It descended from the code used with punched cards and the corresponding six bit binary-coded decimal code used with most of IBM's computer peripherals of the late 1950s and early 1960s. It is supported by various non-IBM platforms, such as Fujitsu-Siemens' BS2000/OSD, OS-IV, MSP, and MSP-EX, the SDS Sigma series, Unisys VS/9, Burroughs MCP and ICL VME.

Programs integrated with IBM MQ use a consistent application program interface (API) across all platforms.

APIs

APIs directly supported by IBM include:

C (programming language) general-purpose programming language

C is a general-purpose, imperative computer programming language, supporting structured programming, lexical variable scope and recursion, while a static type system prevents many unintended operations. By design, C provides constructs that map efficiently to typical machine instructions, and it has therefore found lasting use in applications that were previously coded in assembly language. Such applications include operating systems, as well as various application software for computers ranging from supercomputers to embedded systems.

COBOL is a compiled English-like computer programming language designed for business use. It is imperative, procedural and, since 2002, object-oriented. COBOL is primarily used in business, finance, and administrative systems for companies and governments. COBOL is still widely used in legacy applications deployed on mainframe computers, such as large-scale batch and transaction processing jobs. But due to its declining popularity and the retirement of experienced COBOL programmers, programs are being migrated to new platforms, rewritten in modern languages or replaced with software packages. Most programming in COBOL is now purely to maintain existing applications.

PL/I is a procedural, imperative computer programming language designed for scientific, engineering, business and system programming uses. It has been used by various academic, commercial and industrial organizations since it was introduced in the 1960s, and continues to be actively used.

Additional APIs (not officially supported) are also available via third parties, including:

Perl interpreted programming language

Perl is a family of two high-level, general-purpose, interpreted, dynamic programming languages, Perl 5 and Perl 6.

The Comprehensive Perl Archive Network (CPAN) is a repository of over 250,000 software modules and accompanying documentation for 39,000 distributions, written in the Perl programming language by over 12,000 contributors. CPAN can denote either the archive network itself, or the Perl program that acts as an interface to the network and as an automated software installer. Most software on CPAN is free and open source software. CPAN was conceived in 1993 and active online since October 1995. It is based on the CTAN model and began as a place to unify the structure of scattered Perl archives.

Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum and first released in 1991, Python has a design philosophy that emphasizes code readability, notably using significant whitespace. It provides constructs that enable clear programming on both small and large scales. Van Rossum led the language community until stepping down as leader in July 2018.

Features

One-time delivery: MQ uses once and once only delivery. This quality of service typically prevents message loss or duplication.

Asynchronous messaging: MQ provides application designers with a mechanism to achieve non-time-dependent architecture. Messages can be sent from one application to another, regardless of whether the applications are running at the same time. If a message receiver application is not running when a sender sends it a message, the queue manager will hold the message until the receiver asks for it. Ordering of all messages is preserved, by default this is in FIFO order of receipt at the local queue within priority of the message.

Middleware analysts are computer software engineers with a specialization in products that connect two different computer systems together. These products can be open-source or proprietary. As the term implies, the software, tools, and technologies used by Middleware analysts sit "in-the-middle", between two or more systems; the purpose being to enable two systems to communicate and share information.

FIFO (computing and electronics)

FIFO is an acronym for first in, first out, a method for organising and manipulating a data buffer, where the oldest (first) entry, or 'head' of the queue, is processed first. It is analogous to processing a queue with first-come, first-served (FCFS) behaviour: where the people leave the queue in the order in which they arrive.

Data transformation: e.g. Big Endian to Little Endian, or EBCDIC to ASCII. This is accomplished through the use of message data exits. Exits are compiled applications that run on the queue manager host, and are executed by the IBM MQ software at the time data transformation is needed.

Message-driven architecture framework: IBM MQ allows receipt of messages to "trigger" other applications to run.

Range of APIs: It implements the Java Message Service (JMS) standard API, and also has its own proprietary API, known as the Message Queuing Interface (MQI), which preceded the JMS several years in existence. As of version 8.0.0.4, MQ also supports the MQ Light API.

Clustering: Multiple MQ implementations share the processing of messages, providing load balancing.

Communication

Queue managers communicate with the outside world either through:

Communication between queue managers

This relies on a channel. Each queue manager uses one or more channels to send and receive data to other queue managers. A channel is uni-directional; a second channel is required to return data. In a TCP/IP based network, a channel sends or receives data on a specific port.

Channel types:

When a receiving channel receives a message, it is examined to see which queue manager and queue it is destined for. In the event of a communications failure, MQ can automatically re-establish a connection when the problem is resolved.

The listener is the application's network interface to the queue manager. The listener detects connections from incoming channels, and manages the connection of the sending channels to the receiving channels. In a TCP/IP network, the listener will "listen" for connections on a specific port.

Transmitting data to a queue on another queue manager

Queue types:

A message is placed on a remote queue. The messages goes to a temporary storage transmission queue associated with a channel. On placing a message on a remote queue, the message is transmitted across the remote channel. If the transmission is successful, the message is removed from the transmit queue. On receiving a message, the receiving queue manager examines the message to determine whether the message is for itself or if must go to another queue manager. If the receiving queue manager, the required queue will be checked, and if it exists, the message is placed on this queue. If not, the message is placed on the dead letter queue. MQ has features to manage efficient transmission of data across a variety of communication media. For example, messages can be batched together until a queue reaches a particular depth.

Ordering

Although the queue is FIFO, it is ordered based on the receipt in the local queue, not the committing of the message from the sender. Messages can be prioritized, and by default, the queue is prioritized in order of arrival. Queues will only be in sequence of addition if the message is added locally. Message grouping can be used to ensure a set of messages are in a specific order, aside from that, if sequence is critical, it is the application's responsibility to place sequence data in the message or implement a handshaking mechanism via a return queue. In reality, ordering will be maintained in straightforward configurations.

The log

The other element of a queue manager is the log. As a message is placed on a queue or a configuration change is made, the data is also logged. In the event of a failure, the log is used to recreate damaged objects and recreate messages. Only persistent messages are recreated when a failure occurs—"non-persistent" messages are lost. Non-persistent messages can be sent across a channel set to a fast mode, in which delivery is not assured in the event of a channel failure.

MQ supports both circular and linear logging.

Retrieving messages from queues

Information can be retrieved from queues either by polling the queue to check for available data at suitable intervals, or alternatively MQ can trigger an event, allowing a client application to respond to the delivery of a message.

High availability

There are several software-based High Availability solutions available with IBM MQ; Replicated Data Queue Managers, Queue Manager Clusters, Shared Queues, and Multi-Instance Queue Managers.

Replicated Data Queue Manager (RDQM / 'Easy HA'- MQ Advanced on distributed only): Synchronous replication between three servers that all share a floating IP address.

Queue Manager Clusters: Groups of two or more queue managers on one or more computers are defined to a cluster, providing automatic interconnection, and allow queues to be shared among them for load balancing and redundancy.

Queue Sharing Queues (z/OS only): In a Shared Queue environment, an application can connect to any of the queue managers within the queue-sharing group. Because all the queue managers in the queue-sharing group can access the same set of shared queues, the application does not depend on the availability of a particular queue manager. This gives greater availability if a queue manager stops because all the other queue managers in the queue-sharing group can continue processing the queue.

Multi-Instance Queue Managers (available from v7.0.1): Instances of the same queue manager are configured on two or more computers with their queues and meta data residing on shared storage. By starting multiple instances, one instance becomes the active instance and the other instances become standbys. If the active instance fails, a standby instance running on a different computer automatically takes over.

History

Version release dates

Version nameRelease date
IBM MQ 9.127 July 2018 [6]
IBM MQ on IBM Cloud13 March 2018 [7]
IBM MQ for HPE Nonstop 8.023 June 2017
IBM MQ 9.02 June 2016 [8]
IBM MQ 8.023 May 2014
WebSphere MQ 7.515 June 2012
WebSphere MQ 7.1November 2011
WebSphere MQ 7.0 z/OSJune 2008
WebSphere MQ 7.0 (Distributed, iSeries)May 2008
WebSphere MQ 6.0 z/OSJune 2005
WebSphere MQ 6.0 (Distributed, iSeries)May 2005
WebSphere MQ 5.3 z/OSJune 2002
WebSphere MQ 5.3 (Distributed, iSeries)June, July, Oct, Nov 2002
MQSeries 5.2 (Distributed)Dec 2000
MQSeries for OS/390 V5.2Nov 2000
MQSeries for AS/400 V5.1July-Aug 2000
MQSeries for OS/390 V2.1Feb 1999
MQSeries 5.1April (NT), June 1999
MQSeries for AS/400 V4.2Feb 1998
MQSeries 5.0October 1997
MQSeries for MVS/ESA 1.2August 1997
MQSeries for MVS 1.1.4,June 1996
MQSeries 2.2 (Sun OS/Solaris, DC/OSx)June, July 1996
MQSeries 2.0 Windows NT2Q 1996
MQSeries 2.2 (HP, SCO)4Q 1995
MQSeries for MVS 1.1.3May 1995
MQSeries 2.0 (OS/2, AIX)Feb 1995 (the beginning of the end of ezBridge)
MQM/400 V34Q 1994
ezBridge Transact for MQSeries 3.0July 1994
MQSeries for MVS 1.1.2June 1996
MQM/400 V2.3Feb/April 1994
ezBridge Transact for MQSeriesMarch, Sept, Nov, Dec 1993 (different platforms)
MQM MVS/ESA V1.1 GA (MVS)December 31, 1993

Version EOS

Please see the IBM Software Support Lifecycle site for up to date information on End of Support dates.

Version nameGeneral AvailabilityEnd of MarketingEnd of Support
IBM MQ 9.002-Jun-2016--
IBM MQ 8.013-Jun-201417-Apr-202030-Apr-2020
WebSphere MQ 7.506-Jul-201216-Dec-201630-Apr-2018
WebSphere MQ 7.125-Nov-201112-Jul-201630-Apr-2017

Background architectural reference

With the advent of computers, IBM saw an opportunity to apply new technology to the need for message switching.

In the early 1960s, IBM marketed the IBM 7740 Communication Control System and the IBM 7750 Programmed Transmission Control, which were programmable message switching systems.

The IBM System/360 was announced in April 1964 and with it came communication access methods such as BTAM and QTAM (Basic and Queued Telecommunications Access Methods). In 1971, TCAM, the Telecommunications Access Method, offered its users a more advanced form of message switching or message routing. TCAM was widely accepted, especially in the financial and brokerage industries. It supported asynchronous messaging, as with the later MQ. TCAM 3.0 added in reusable disk message queues for recovery soon thereafter, as with MQ. A high-level PL/I program could be used to access TRANSIENT datasets (dynamic message queues). Reading a message from a transient dataset resulted in that message being removed from the queue, as with a non-browse READ with MQ.

In the late 1970s, transaction management systems came into being, each trying to achieve a leadership position in the industry. Within IBM, CICS and IMS were chosen as strategic products to address the need for transaction management. Within both CICS and IMS, each had its version of message switching, IMS being a front-end queued system and CICS having its Transient Data facility as the possible basis for message switching.[citation??]

CICS established itself as a popular transaction management system in the 1968-1971 timeframe. Those users who had adopted TCAM for its message handling capabilities, now wanted a combined use of TCAM with CICS. In December 1971, IBM announced CICS support of TCAM as part of the CICS/OS-Standard product, to be delivered in December 1972. For interested customers, this enabled them to use TCAM for its message handling strengths and also have TCAM-connected terminals or computers interface with CICS online applications.[citation??]

In January 1973, TCAM continued to be supported by CICS/OS-Standard Version 2.3. However, TCAM support was omitted from the initial release of CICS/VS, announced in February 1973 and delivered in June 1974. Needless to say, many CICS-TCAM customers were not happy with that product direction.

With considerable pressure from CICS-TCAM customers, the CICS support of TCAM was reinstated in the CICS/VS 1.1 product, as of September 1974. In addition to the previous DCB support, with this reinstatement of TCAM support, CICS began to support TCAM access via VTAM, also known as the ACB support. CICS TCAM ACB support was discontinued as of the CICS/ESA Version 3 product in 1990.

In 1992, IBM announced a new product called MQSeries. This brand name was later renamed to "WebSphere MQ" (sometimes shortened to WMQ) in 2002 to support the WebSphere family name and the product. In 2014, it was renamed "IBM MQ". MQ was to be the extension of TCAM functionality from IBM-only systems to all other platforms. MQ has an architecture that enables heterogeneous systems to communicate with each other (e.g. IBM, HP, Sun, Tandem, etc.). MQ can be used with CICS systems to send and receive data to/from any other MQ-eligible system. MQ can be used to initiate work in a CICS system or a CICS transaction can initiate work in another CICS or non-CICS system.

IBM MQ now supports 80 different environments and has become the leading message assured delivery switching/routing product in the industry. [9]

MQ and web services

IBM MQ can be used as a foundation for creating service-oriented architectures. Several additional product options exist to help convert legacy programs into functioning web services through the use of MQ. Larger, heterogeneous enterprises often appear as a federation of somewhat autonomous domains based on lines of business, functional or governance areas. In such environments, some services may be shared or reused only within a single domain, while others may be shared or reused throughout the enterprise. IBM MQ provides the means by which communication exists between lines-of-business or otherwise separate business domains.

A related product in the IBM MQ product family, called IBM Integration Bus (formerly WebSphere Message Broker), enables a diverse and robust set of extensions to queue-based architectures. Using IBM Integration Bus, users can implement a WebServices front-end, complete with WSDL file support that can interact with any queue-based application.

See also

Related Research Articles

z/VSE is an operating system for IBM mainframe computers, the latest one in the DOS/360 lineage, which originated in 1965. Announced Feb. 1, 2005 by IBM as successor to VSA/ESA 2.7, then-new z/VSEwas named to reflect the new "System z" branding for IBM's mainframe product line.

The Java Message Service (JMS) API is a Java message-oriented middleware API for sending messages between two or more clients. It is an implementation to handle the producer–consumer problem. JMS is a part of the Java Platform, Enterprise Edition, and was defined by a specification developed at Sun Microsystems, but which has since been guided by the Java Community Process. It is a messaging standard that allows application components based on Java EE to create, send, receive, and read messages. It allows the communication between different components of a distributed application to be loosely coupled, reliable, and asynchronous.

IBM WebSphere refers to a brand of proprietary computer software products in the genre of enterprise software known as "application and integration middleware". These software products are used by end-users to create and integrate applications with other applications. IBM WebSphere has been available to the general market since 1998.

IBM Information Management System is an information system of the company IBM

IBM Information Management System (IMS) is a joint hierarchical database and information management system with extensive transaction processing capabilities.

CICS transaction management system by IBM

Customer Information Control System (CICS) is a family of mixed language application servers that provide online transaction management and connectivity for applications on IBM mainframe systems under z/OS and z/VSE.

In computer science, message queues and mailboxes are software-engineering components used for inter-process communication (IPC), or for inter-thread communication within the same process. They use a queue for messaging – the passing of control or of content. Group communication systems provide similar kinds of functionality.

ALCS, which stands for Airline Control System, is an application server that provides industrial-strength, online transaction management for mission-critical applications.

In computing, Advanced Program to Program Communication or APPC is a protocol which computer programs can use to communicate over a network. APPC is at the application layer in the OSI model, it enables communications between programs on different computers, from portables and workstations to midrange and host computers. APPC is defined as VTAM LU 6.2

Queued Telecommunications Access Method (QTAM) is an IBM System/360 communications access method incorporating built-in queuing. QTAM was an alternative to the lower level Basic Telecommunications Access Method (BTAM) access method

IBM APP Connect Enterprise is IBM's integration broker from the WebSphere product family that allows business information to flow between disparate applications across multiple hardware and software platforms. Rules can be applied to the data flowing through the message broker to route and transform the information. The product is an Enterprise Service Bus supplying a communication channel between applications and services in a service-oriented architecture.

MessagePlus/Open is a communication platform for medium to large organizations designed specifically to handle high volumes of traffic within a high-availability environment. Currently supported communication channels include fax, fax over IP, e-mail and SMS, together withvarious options for integration with business applications. The product has been developed by INTERCOPE GmbH, Germany and is sold by both Intercope and IBM. It was previously known as FaxPlus/Open.

An access method is a function of a mainframe operating system that enables access to data on disk, tape or other external devices. They were introduced in 1963 in IBM OS/360 operating system. Access methods provide an application programming interface (API) for programmers to transfer data to or from device, and could be compared to device drivers in non-mainframe operating systems, but typically provide a greater level of functionality.

Telecommunications Access Method (TCAM) is an access method, in IBM's OS/360 and successors computer operating systems on IBM System/360 and later, that provides access to terminals units within a teleprocessing network.

Microsoft Host Integration Server is a gateway application providing connectivity between Microsoft Windows networks and IBM mainframe and AS/400 systems. Support is provided for SNA, 3270, 5250, CICS, APPC, and other IBM protocols. Support is also provided for advanced integration with Windows networks and software, such as linking Microsoft Message Queuing applications to IBM WebSphere MQ, binding Microsoft DTC transactions with CICS, and cross-protocol access to DB2 databases on IBM platforms.

A message queueing service is a message-oriented middleware or MOM deployed in a compute cloud using software as a service model. Service subscribers access queues and or topics to exchange data using point-to-point or publish and subscribe patterns.

Unisys OS 2200 distributed processing

OS 2200 supports all commonly used, and many not so commonly used, distributed processing protocols, APIs, and development technology.

IBM WebSphere Application Server for z/OS is one of the platform implementations of IBM's WebSphere Application Server family. The latest version is Version 9.0.

IBM WebSphere Optimized Local Adapters is a functional component of IBM's WebSphere Application Server for z/OS that provides an efficient cross-memory mechanism for calls both inbound to WAS z/OS and outbound from z/OS. Because it avoids the overhead of other communication mechanisms, it is capable of high volume exchange of messages. WOLA is an extension to the existing cross-memory exchange mechanism of WAS z/OS, with WOLA providing an external interface so z/OS address spaces outside the WAS z/OS server may participate in cross-memory exchanges. WOLA supports connectivity between a WAS z/OS server and one or more of the following: CICS, IMS, Batch, UNIX Systems Services and ALCS. WOLA was first made available in WAS z/OS Version 7, Fixpack 4 (7.0.0.4). Functional enhancements have appeared in subsequent fixpacks as documented in this article.

MQTT is an ISO standard publish-subscribe-based messaging protocol. It works on top of the TCP/IP protocol. It is designed for connections with remote locations where a "small code footprint" is required or the network bandwidth is limited. The publish-subscribe messaging pattern requires a message broker.

Distributed Data Management Architecture

Distributed Data Management Architecture (DDM) is IBM's open, published software architecture for creating, managing and accessing data on a remote computer. DDM was initially designed to support record-oriented files; it was extended to support hierarchical directories, stream-oriented files, queues, and system command processing; it was further extended to be the base of IBM's Distributed Relational Database Architecture (DRDA); and finally, it was extended to support data description and conversion. Defined in the period from 1980 to 1993, DDM specifies necessary components, messages, and protocols, all based on the principles of object-orientation. DDM is not, in itself, a piece of software; the implementation of DDM takes the form of client and server products. As an open architecture, products can implement subsets of DDM architecture and products can extend DDM to meet additional requirements. Taken together, DDM products implement a distributed file system.

References

  1. "MA95: A REXX interface to WebSphere MQ" . Retrieved 2014-10-09.
  2. "Introducing XMS -- The IBM Message Service API" . Retrieved 2007-12-06.
  3. MQSeries - Perl extension for MQSeries support - search.cpan.org
  4. PyMQI Documentation
  5. "MO74: WebSphere MQ - Windows Powershell Library" . Retrieved 2007-12-06.
  6. "IBM announcement of IBM MQ 9.1". International Business Machines (IBM). Retrieved 6 August 2018.
  7. "IBM announcement of IBM MQ on IBM Cloud". International Business Machines (IBM). Retrieved 6 August 2018.
  8. "IBM announcement of IBM MQ 9.0". International Business Machines (IBM). Retrieved 17 June 2016.
  9. http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=an&subtype=ca&supplier=897&letternum=ENUS211-395 IBM MQ is the market-leading, message-oriented middleware product that delivers a reliable, proven universal messaging backbone for almost 10,000 organizations of different sizes, spanning many industries around the world.