IPv6 Routing Protocol for Low-Power and Lossy Networks

Last updated

RPL [1] (Routing Protocol for Low-Power and Lossy Networks) is a routing protocol for wireless networks with low power consumption and generally susceptible to packet loss. It is a proactive protocol based on distance vectors and operates on IEEE 802.15.4, [2] optimized for multi-hop and many-to-one communication, but also supports one-to-one messages.[ citation needed ]

Contents

This protocol is specified in RFC   6550 with special applications in RFCs 5867 , 5826 , 5673 and 5548. RPL can support a wide variety of link layers, including those with limitations, with potential losses or that are used in devices with limited resources. This protocol can quickly create network routes, share routing knowledge and adapt the topology in an efficient way.[ citation needed ]

Protocol configuration

RPL [1] creates a topology similar to a tree (DAG or directed acyclic graph). Each node within the network has an assigned rank (Rank), which increases as the teams move away from the root node (DODAG [1] ). The nodes resend packets using the lowest range as the route selection criteria.[ citation needed ]

Three control messages are defined in ICMPv6 via RFC   4443:

Implementation

The implementation of the RPL protocol occurs in wireless sensors and networks, the most used operating system for its implementation is Contiki which is a small open source operating system developed for use in a number of small systems ranging from 8-bit computers to integrated systems on microcontrollers, including sensor network nodes. [3]

Other operating systems

The RPL protocol is implemented in other operating systems, such as:

Related Research Articles

Intermediate System to Intermediate System is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for data through a packet switching network.

Link-state routing protocols are one of the two main classes of routing protocols used in packet switching networks for computer communications, the others being distance-vector routing protocols. Examples of link-state routing protocols include Open Shortest Path First (OSPF) and Intermediate System to Intermediate System (IS-IS).

Zigbee is an IEEE 802.15.4-based specification for a suite of high-level communication protocols used to create personal area networks with small, low-power digital radios, such as for home automation, medical device data collection, and other low-power low-bandwidth needs, designed for small scale projects which need wireless connection. Hence, Zigbee is a low-power, low-data-rate, and close proximity wireless ad hoc network.

<span class="mw-page-title-main">Wireless mesh network</span> Radio nodes organized in a mesh topology

A wireless mesh network (WMN) is a communications network made up of radio nodes organized in a mesh topology. It can also be a form of wireless ad hoc network.

<span class="mw-page-title-main">Contiki</span> Real-time operating system

Contiki is an operating system for networked, memory-constrained systems with a focus on low-power wireless Internet of Things (IoT) devices. Contiki is used for systems for street lighting, sound monitoring for smart cities, radiation monitoring and alarms. It is open-source software released under the BSD-3-Clause license.

<span class="mw-page-title-main">Optimized Link State Routing Protocol</span> IP routing protocol optimized for mobile ad hoc networks

The Optimized Link State Routing Protocol (OLSR) is an IP routing protocol optimized for mobile ad hoc networks, which can also be used on other wireless ad hoc networks. OLSR is a proactive link-state routing protocol, which uses hello and topology control (TC) messages to discover and then disseminate link state information throughout the mobile ad hoc network. Individual nodes use this topology information to compute next hop destinations for all nodes in the network using shortest hop forwarding paths.

Ad hoc On-Demand Distance Vector (AODV) Routing is a routing protocol for mobile ad hoc networks (MANETs) and other wireless ad hoc networks. It was jointly developed by Charles Perkins and Elizabeth Royer and was first published in the ACM 2nd IEEE Workshop on Mobile Computing Systems and Applications in February 1999.

Mobile IP is an Internet Engineering Task Force (IETF) standard communications protocol that is designed to allow mobile device users to move from one network to another while maintaining a permanent IP address. Mobile IP for IPv4 is described in IETF RFC 5944, and extensions are defined in IETF RFC 4721. Mobile IPv6, the IP mobility implementation for the next generation of the Internet Protocol, IPv6, is described in RFC 6275.

Wireless sensor networks (WSNs) refer to networks of spatially dispersed and dedicated sensors that monitor and record the physical conditions of the environment and forward the collected data to a central location. WSNs can measure environmental conditions such as temperature, sound, pollution levels, humidity and wind.

Dynamic Source Routing (DSR) is a routing protocol for wireless mesh networks. It is similar to AODV in that it forms a route on-demand when a transmitting node requests one. However, it uses source routing instead of relying on the routing table at each intermediate device.

6LoWPAN was a working group of the Internet Engineering Task Force (IETF). It was created with the intention of applying the Internet Protocol (IP) even to the smallest devices, enabling low-power devices with limited processing capabilities to participate in the Internet of Things.

A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

Dust Networks, Inc. is an American company that specializes in the design and manufacture of wireless sensor networks for industrial applications including process monitoring, condition monitoring, asset management, environment, health and safety (EHS) monitoring, and power management. They were acquired by Linear Technology, Inc in December 2011, which in turn was acquired by Analog Devices, Inc. in 2017. The Dust Networks product team operates in the IoT Networking Platforms group of Analog Devices.

Data center bridging (DCB) is a set of enhancements to the Ethernet local area network communication protocol for use in data center environments, in particular for use with clustering and storage area networks.

The Stream Control Transmission Protocol (SCTP) is a computer networking communications protocol in the transport layer of the Internet protocol suite. Originally intended for Signaling System 7 (SS7) message transport in telecommunication, the protocol provides the message-oriented feature of the User Datagram Protocol (UDP), while ensuring reliable, in-sequence transport of messages with congestion control like the Transmission Control Protocol (TCP). Unlike UDP and TCP, the protocol supports multihoming and redundant paths to increase resilience and reliability.

<span class="mw-page-title-main">PowWow</span>

PowWow is a wireless sensor network (WSN) mote developed by the Cairn team of IRISA/INRIA. The platform is currently based on IEEE 802.15.4 standard radio transceiver and on an MSP430 microprocessor. Unlike other available mote systems, PowWow offers specific features for a very-high energy efficiency:

MyriaNed is a wireless sensor network (WSN) platform developed by DevLab. It uses an epidemic communication style based on standard radio broadcasting. This approach reflects the way humans interact, which is called gossiping. Messages are sent periodically and received by adjoining neighbours. Each message is repeated and duplicated towards all nodes that span the network; it spreads like a virus.

<span class="mw-page-title-main">RIOT (operating system)</span> Real-time operating system

RIOT is a small operating system for networked, memory-constrained systems with a focus on low-power wireless Internet of things (IoT) devices. It is open-source software, released under the GNU Lesser General Public License (LGPL).

A sensor network query processor (SNQP), also called a sensorDB, is a user-friendly interface for programming and running applications which translates instructions from declarative programming language with high-level instructions to low-level instructions understood by the operating system. The basic idea of SNQP is the addition of a layer modeling the WSN as a distributed database searchable by a query language similar to SQL.

<span class="mw-page-title-main">OpenWSN</span>

OpenWSN is a project created at the University of California Berkeley and extended at the INRIA and at the Open University of Catalonia (UOC) which aims to build an open standard-based and open source implementation of a complete constrained network protocol stack for wireless sensor networks and Internet of Things. The root of OpenWSN is a deterministic MAC layer implementing the IEEE 802.15.4e TSCH based on the concept of Time Slotted Channel Hopping (TSCH). Above the MAC layer, the Low Power Lossy Network stack is based on IETF standards including the IETF 6TiSCH management and adaptation layer. The stack is complemented by an implementation of 6LoWPAN, RPL in non-storing mode, UDP and CoAP, enabling access to devices running the stack from the native IPv6 through open standards.

References

  1. 1 2 3 4 Winter, Tim. "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks". tools.ietf.org. Retrieved 2018-10-13.
  2. Pat, Kinney; Tero, Kivinen. "IEEE 802.15.4 Information Element for the IETF". tools.ietf.org. Retrieved 2018-10-13.
  3. 1 2 3 4 Calderón Castillo, William Eduardo (2014-07-03). Diseño e implementación de un sistema genérico de monitoreo usando redes de sensores inalámbricos con el protocolo 6LoWPAN. www.bdigital.unal.edu.co (masters) (in European Spanish). Universidad Nacional de Colombia. Archived from the original on 2018-10-14. Retrieved 2018-10-13.