IdMOC

Last updated

Integrated discrete Multiple Organ Culture (IdMOC) is an in vitro, cell culture based experimental model for the study of intercellular communication. In conventional in vitro systems, each cell type is studied in isolation ignoring critical interactions between organs or cell types. IdMOC technology is based on the concept that multiple organs signal or communicate via the systemic circulation (i.e., blood).

Contents

Schematic representation of an IdMOC plate IdMOC.JPG
Schematic representation of an IdMOC plate

The IdMOC plate consists of multiple inner wells within a large interconnecting chamber. Multiple cell types are first individually seeded in the inner wells and, when required, are flooded with an overlying medium to facilitate well-to-well communication. Test material can be added to the overlying medium and both media and cells can be analyzed individually. Plating of hepatocytes with other organ-specific cells allows evaluation of drug metabolism and organotoxicity. [1]

Drug metabolism the biochemical modification of drugs or foreign compounds by living organisms, usually by enzymes

Drug metabolism is the metabolic breakdown of drugs by living organisms, usually through specialized enzymatic systems. More generally, xenobiotic metabolism is the set of metabolic pathways that modify the chemical structure of xenobiotics, which are compounds foreign to an organism's normal biochemistry, such as any drug or poison. These pathways are a form of biotransformation present in all major groups of organisms, and are considered to be of ancient origin. These reactions often act to detoxify poisonous compounds. The study of drug metabolism is called pharmacokinetics.

The IdMOC system has numerous applications in drug development, such as the evaluation of drug metabolism and toxicity. It can simultaneously evaluate the toxic potential of a drug on cells from multiple organs and evaluate drug stability, distribution, metabolite formation, and efficacy. By modeling multiple-organ interactions, IdMOC can examine the pharmacological effects of a drug and its metabolites on target and off-target organs as well as evaluate drug-drug interactions by measuring cytochrome P450 (CYP) induction or inhibition in hepatocytes.

Drug development the process of bringing a new pharmaceutical drug to the market once a lead compound has been identified

Drug development is the process of bringing a new pharmaceutical drug to the market once a lead compound has been identified through the process of drug discovery. It includes preclinical research on microorganisms and animals, filing for regulatory status, such as via the United States Food and Drug Administration for an investigational new drug to initiate clinical trials on humans, and may include the step of obtaining regulatory approval with a new drug application to market the drug.

Toxicity The ability of a chemical to cause damage to life

Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a substructure of the organism, such as a cell (cytotoxicity) or an organ such as the liver (hepatotoxicity). By extension, the word may be metaphorically used to describe toxic effects on larger and more complex groups, such as the family unit or society at large. Sometimes the word is more or less synonymous with poisoning in everyday usage.

Pharmacology Branch of biology concerning drugs

Pharmacology is the branch of biology concerned with the study of drug or medication action, where a drug can be broadly defined as any man-made, natural, or endogenous molecule which exerts a biochemical or physiological effect on the cell, tissue, organ, or organism. More specifically, it is the study of the interactions that occur between a living organism and chemicals that affect normal or abnormal biochemical function. If substances have medicinal properties, they are considered pharmaceuticals.

IdMOC can also be used for routine and high throughput screening of drugs with desirable ADME or ADME-Tox properties. In vitro toxicity screening using hepatocytes in conjunction with other primary cells such as cardiomyocytes (cardiotoxicity model), kidney proximal tubule epithelial cells (nephrotoxicity model), astrocytes (neurotoxicity model), endothelial cells (vascular toxicity model), and airway epithelial cells (pulmonary toxicity model) is invaluable to the drug design and discovery process. [2]

ADME is an abbreviation in pharmacokinetics and pharmacology for "absorption, distribution, metabolism, and excretion", and describes the disposition of a pharmaceutical compound within an organism. The four criteria all influence the drug levels and kinetics of drug exposure to the tissues and hence influence the performance and pharmacological activity of the compound as a drug. Sometimes, liberation and/or toxicity are also considered, yielding LADME, ADMET, or LADMET.

In vitro toxicity testing is the scientific analysis of the effects of toxic chemical substances on cultured bacteria or mammalian cells. In vitro testing methods are employed primarily to identify potentially hazardous chemicals and/or to confirm the lack of certain toxic properties in the early stages of the development of potentially useful new substances such as therapeutic drugs, agricultural chemicals and food additives.

Cardiotoxicity is the occurrence of heart electrophysiology dysfunction or muscle damage. The heart becomes weaker and is not as efficient in pumping and therefore circulating blood. Cardiotoxicity may be caused by chemotherapy treatment, complications from anorexia nervosa, adverse effects of heavy metals intake, or an incorrectly administered drug such as bupivacaine.

The IdMOC was patented by Dr. Albert P. Li in 2004. [3]

Albert P. Li is President and CEO of In Vitro ADMET Laboratories (IVAL), Columbia, MD and Malden, MA. For the past three decades, Li has devoted his scientific career to the advancement of scientific concepts and technologies to accurately predict human drug properties. His research is focused on the development and application of human-based in vitro experimental systems in drug discovery and development. He is a pioneer in the isolation, cryopreservation, and culturing of human hepatocytes and their application in the evaluation of drug metabolism, drug-drug interactions, and drug toxicity.

See also

Cytochrome P450

Cytochromes P450 (CYPs) are a family of enzymes containing heme as a cofactor that function as monooxygenases. In mammals, these proteins oxidize steroids, fatty acids, and xenobiotics, and are important for the clearance of various compounds, as well as for hormone synthesis and breakdown. In plants, these proteins are important for the biosynthesis of defensive compounds, fatty acids, and hormones.

Toxicology branch of biology, chemistry, and medicine

Toxicology is a discipline, overlapping with biology, chemistry, pharmacology, and medicine, that involves the study of the adverse effects of chemical substances on living organisms and the practice of diagnosing and treating exposures to toxins and toxicants. The relationship between dose and its effects on the exposed organism is of high significance in toxicology. Factors that influence chemical toxicity include the dosage, route of exposure, species, age, sex, and environment. Toxicologists are experts on poisons and poisoning.

Related Research Articles

Kavalactone group of chemical compounds

Kavalactones are a class of lactone compounds found in the kava shrub. Kavalactones are under research for potential to have various psychotropic effects, including anxiolytic and sedative/hypnotic activities.

Hepatotoxicity implies chemical-driven liver damage. Drug-induced liver injury is a cause of acute and chronic liver disease.

In genetics, genotoxicity describes the property of chemical agents that damages the genetic information within a cell causing mutations, which may lead to cancer. While genotoxicity is often confused with mutagenicity, all mutagens are genotoxic, whereas not all genotoxic substances are mutagenic. The alteration can have direct or indirect effects on the DNA: the induction of mutations, mistimed event activation, and direct DNA damage leading to mutations. The permanent, heritable changes can affect either somatic cells of the organism or germ cells to be passed on to future generations. Cells prevent expression of the genotoxic mutation by either DNA repair or apoptosis; however, the damage may not always be fixed leading to mutagenesis.

Hep G2 cell line

Hep G2 is a human liver cancer cell line.

CYP3A4 protein-coding gene in the species Homo sapiens

Cytochrome P450 3A4 is an important enzyme in the body, mainly found in the liver and in the intestine. It oxidizes small foreign organic molecules (xenobiotics), such as toxins or drugs, so that they can be removed from the body.

Physiologically based pharmacokinetic modelling

Physiologically based pharmacokinetic (PBPK) modeling is a mathematical modeling technique for predicting the absorption, distribution, metabolism and excretion (ADME) of synthetic or natural chemical substances in humans and other animal species. PBPK modeling is used in pharmaceutical research and drug development, and in health risk assessment for cosmetics or general chemicals.

Grapefruit–drug interactions

Some fruit juices and fruits can interact with numerous drugs, in many cases causing adverse effects. The effect was first discovered accidentally, when a test of drug interactions with alcohol used grapefruit juice to hide the taste of the ethanol.

CYP2C9 protein-coding gene in the species Homo sapiens

Cytochrome P450 2C9 is an enzyme that in humans is encoded by the CYP2C9 gene.

The S9 fraction is the product of an organ tissue homogenate used in biological assays. The S9 fraction is most frequently used in assays that measure the metabolism of drugs and other xenobiotics. It is defined by the U.S. National Library of Medicine's "IUPAC Glossary of Terms Used in Toxicology" as the "Supernatant fraction obtained from an organ homogenate by centrifuging at 9000 g for 20 minutes in a suitable medium; this fraction contains cytosol and microsomes." The microsomes component of the S9 fraction contain cytochrome P450 isoforms and other enzyme activities. The cytosolic portion contains the major part of the activities of transferases. The S9 fraction is easier to prepare than purified microsomes.

Sean Ekins is a British pharmacologist and expert in the fields of ADME/Tox, computational toxicology and cheminformatics at Collaborations in Chemistry, a division of corporate communications firm Collaborations in Communications. He is also the editor of four books and a book series for John Wiley & Sons.

Elimination (pharmacology)

In pharmacology the elimination or excretion of a drug is understood to be any one of a number of processes by which a drug is eliminated from an organism either in an unaltered form or modified as a metabolite. The kidney is the main excretory organ although others exist such as the liver, the skin, the lungs or glandular structures, such as the salivary glands and the lacrimal glands. These organs or structures use specific routes to expel a drug from the body, these are termed elimination pathways:

A 3D cell culture is an artificially created environment in which biological cells are permitted to grow or interact with their surroundings in all three dimensions. Unlike 2D environments, a 3D cell culture allows cells in vitro to grow in all directions, similar to how they would in vivo. These three-dimensional cultures are usually grown in bioreactors, small capsules in which the cells can grow into spheroids, or 3D cell colonies. Approximately 300 spheroids are usually cultured per bioreactor.

MC2 Biotek is a biotechnology company established in 2006, with offices in Denmark and external labs in the United Kingdom. MC2 is a holding company, comprising three smaller Biotechnology companies with their own biotechnology technologies: DrugMode (DK), Zadec (DK), and Drug Delivery Solutions (UK). DrugMode specializes in 3D cell culture, and is based out of the University of Southern Denmark at Odense. Zadec focuses on Diabetes and nutrition, and has developed an oral anti-diabetes drug, RX-1, which is currently in clinical trials. Drug Delivery Solutions works in the field of dermatology and ophthalmology, developing topical drugs such as a cream to treat psoriasis.

In vitro to in vivo extrapolation (IVIVE) refers to the qualitative or quantitative transposition of experimental results or observations made in vitro to predicts phenomena in vivo, biological organisms.

4-Ipomeanol chemical compound

4-Ipomeanol (4-IPO) is a pulmonary pre-toxin isolated from sweet potatoes infected with the fungus Fusarium solani. One of the 4-IPO metabolites is toxic to the lungs, liver and kidney in humans and animals. This metabolite can covalently bind to proteins, thereby interfering with normal cell processes.

References

  1. Li AP, Bode C, Sakai Y. A novel in vitro system, the integrated discrete multiple organ cell culture (IdMOC) system, for the evaluation of human drug toxicity: comparative cytotoxicity of tamoxifen towards normal human cells from five major organs and MCF-7 adenocarcinoma breast cancer cells. Chem Biol Interact. 2004 Nov 1;150(1):129-36
  2. Li, AP. In vitro evaluation of metabolic drug-drug interactions: a descriptive and critical commentary. Current Protocols in Toxicology 2007 33:4.25.1-4.25.11
  3. United States Patent: 7186548 - Cell culture tool and method , retrieved 2015-08-19