Imaging cycler microscopy

Last updated
Comparison of dimension-unlimited fluorescence imaging cycler microscopy (ICM) and standard three-parameter fluorescence microscopy Comparison of dimension-unlimited epifluorescence imaging cycler microscopy (ICM) and standard three-parameter fluorescence microscopy..jpg
Comparison of dimension-unlimited fluorescence imaging cycler microscopy (ICM) and standard three-parameter fluorescence microscopy

An imaging cycler microscope (ICM) is a fully automated (epi) fluorescence microscope which overcomes the spectral resolution limit resulting in parameter- and dimension-unlimited fluorescence imaging. The principle and robotic device was described by Walter Schubert in 1997 [1] and has been further developed with his co-workers within the human toponome project. [2] [3] [4] [5] The ICM runs robotically controlled repetitive incubation-imaging-bleaching cycles with dye-conjugated probe libraries recognizing target structures in situ (biomolecules in fixed cells or tissue sections). This results in the transmission of a randomly large number of distinct biological informations by re-using the same fluorescence channel after bleaching for the transmission of another biological information using the same dye which is conjugated to another specific probe, a.s.o. Thereby noise-reduced quasi-multichannel fluorescence images with reproducible physical, geometrical, and biophysical stabilities are generated. The resulting power of combinatorial molecular discrimination (PCMD) per data point is given by 65,536k, where 65,536 is the number of grey value levels (output of a 16-bit CCD camera), and k is the number of co-mapped biomolecules and/or subdomains per biomolecule(s). High PCMD has been shown for k = 100, [3] [5] and in principle can be expanded for much higher numbers of k. In contrast to traditional multichannel–few-parameter fluorescence microscopy (panel a in the figure) high PCMDs in an ICM lead to high functional and spatial resolution (panel b in the figure). Systematic ICM analysis of biological systems reveals the supramolecular segregation law that describes the principle of order of large, hierarchically organized biomolecular networks in situ (toponome). [6] The ICM is the core technology for the systematic mapping of the complete protein network code in tissues (human toponome project). [2] The original ICM method [1] includes any modification of the bleaching step. Corresponding modifications have been reported for antibody retrieval [7] and chemical dye-quenching [8] debated recently. [9] [10] The Toponome Imaging Systems (TIS) and multi-epitope-ligand cartographs (MELC) represent different stages of the ICM technological development. Imaging cycler microscopy received the American ISAC best paper award in 2008 for the three symbol code of organized proteomes. [11]

Contents

Citations

  1. 1 2 Schubert W. (1997) Automated device and method for measuring and identifying molecules or fragments thereof. European patent EP 0810428 B1 [see also Schubert W. US patent 6,150,173 (2000); Japanese patent 3739528 (1998)].
  2. 1 2 Cottingham, Katie (May 2008). "Human Toponome Project | Human Proteinpedia is open for (free) business". Journal of Proteome Research. 7 (5): 1806. doi: 10.1021/pr083701k .
  3. 1 2 Schubert, Walter; Bonnekoh, Bernd; Pommer, Ansgar J.; Philipsen, Lars; Böckelmann, Raik; Malykh, Yanina; Gollnick, Harald; Friedenberger, Manuela; Bode, Marcus; Dress, Andreas W. M. (1 October 2006). "Analyzing proteome topology and function by automated multidimensional fluorescence microscopy". Nature Biotechnology. 24 (10): 1270–1278. doi:10.1038/nbt1250. PMID   17013374. S2CID   30436820.
  4. Friedenberger, Manuela; Bode, Marcus; Krusche, Andreas; Schubert, Walter (September 2007). "Fluorescence detection of protein clusters in individual cells and tissue sections by using toponome imaging system: sample preparation and measuring procedures". Nature Protocols. 2 (9): 2285–2294. doi:10.1038/nprot.2007.320. PMID   17853885. S2CID   10987767.
  5. 1 2 Schubert, W. "Direct, spatial imaging of randomly large supermolecules by using parameter unlimited TIS imaging cycler microscopy" (PDF). International Microscopy Conference 2013. Retrieved 2013-09-23.
  6. Schubert, W. (2014). "Systematic, spatial imaging of large multimolecular assemblies and the emerging principles of supramolecular order in biological systems". Journal of Molecular Recognition. 27 (1): 3–18. doi:10.1002/jmr.2326. PMC   4283051 . PMID   24375580.
  7. Micheva, Kristina D.; Smith, Stephen J. (July 2007). "Array Tomography: A New Tool for Imaging the Molecular Architecture and Ultrastructure of Neural Circuits". Neuron. 55 (1): 25–36. doi:10.1016/j.neuron.2007.06.014. PMC   2080672 . PMID   17610815.
  8. Gerdes, M. J.; Sevinsky, C. J.; Sood, A.; Adak, S.; Bello, M. O.; Bordwell, A.; Can, A.; Corwin, A.; Dinn, S.; Filkins, R. J.; Hollman, D.; Kamath, V.; Kaanumalle, S.; Kenny, K.; Larsen, M.; Lazare, M.; Li, Q.; Lowes, C.; McCulloch, C. C.; McDonough, E.; Montalto, M. C.; Pang, Z.; Rittscher, J.; Santamaria-Pang, A.; Sarachan, B. D.; Seel, M. L.; Seppo, A.; Shaikh, K.; Sui, Y.; Zhang, J.; Ginty, F. (1 July 2013). "Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue". Proceedings of the National Academy of Sciences. 110 (29): 11982–11987. Bibcode:2013PNAS..11011982G. doi: 10.1073/pnas.1300136110 . PMC   3718135 . PMID   23818604.
  9. Schubert, W.; Dress, A.; Ruonala, M.; Krusche, A.; Hillert, R.; Gieseler, A.; Walden, P. (7 January 2014). "Imaging cycler microscopy". Proceedings of the National Academy of Sciences. 111 (2): E215. Bibcode:2014PNAS..111E.215S. doi: 10.1073/pnas.1319017111 . PMC   3896151 . PMID   24398531.
  10. Gerdes, M. J. (7 January 2014). "Reply to Schubert et al.: Regarding critique of highly multiplexed technologies". Proceedings of the National Academy of Sciences. 111 (2): E216. Bibcode:2014PNAS..111E.216G. doi: 10.1073/pnas.1319622111 . PMC   3896205 . PMID   24571024.
  11. Schubert, Walter (June 2007). "A three-symbol code for organized proteomes based on cyclical imaging of protein locations". Cytometry Part A. 71A (6): 352–360. doi: 10.1002/cyto.a.20281 . PMID   17326231. S2CID   3132423.

Related Research Articles

<span class="mw-page-title-main">Microscopy</span> Viewing of objects which are too small to be seen with the naked eye

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The part of an antibody that binds to the epitope is called a paratope. Although epitopes are usually non-self proteins, sequences derived from the host that can be recognized are also epitopes.

<span class="mw-page-title-main">Flow cytometry</span> Lab technique in biology and chemistry

Flow cytometry (FC) is a technique used to detect and measure the physical and chemical characteristics of a population of cells or particles.

<span class="mw-page-title-main">Immunostaining</span> Biochemical technique

In biochemistry, immunostaining is any use of an antibody-based method to detect a specific protein in a sample. The term "immunostaining" was originally used to refer to the immunohistochemical staining of tissue sections, as first described by Albert Coons in 1941. However, immunostaining now encompasses a broad range of techniques used in histology, cell biology, and molecular biology that use antibody-based staining methods.

<span class="mw-page-title-main">Immunofluorescence</span> Technique used for light microscopy

Immunofluorescence(IF) is a light microscopy-based technique that allows detection and localization of a wide variety of target biomolecules within a cell or tissue at a quantitative level. The technique utilizes the binding specificity of antibodies and antigens. The specific region an antibody recognizes on an antigen is called an epitope. Several antibodies can recognize the same epitope but differ in their binding affinity. The antibody with the higher affinity for a specific epitope will surpass antibodies with a lower affinity for the same epitope.

<span class="mw-page-title-main">Immunohistochemistry</span> Common application of immunostaining

Immunohistochemistry (IHC) is a form of immunostaining. It involves the process of selectively identifying antigens (proteins) in cells and tissue, by exploiting the principle of antibodies binding specifically to antigens in biological tissues. Albert Hewett Coons, Ernest Berliner, Norman Jones and Hugh J Creech was the first to develop immunofluorescence in 1941. This led to the later development of immunohistochemistry.

<span class="mw-page-title-main">Förster resonance energy transfer</span> Photochemical energy transfer mechanism

Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). A donor chromophore, initially in its electronic excited state, may transfer energy to an acceptor chromophore through nonradiative dipole–dipole coupling. The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, making FRET extremely sensitive to small changes in distance.

A total internal reflection fluorescence microscope (TIRFM) is a type of microscope with which a thin region of a specimen, usually less than 200 nanometers can be observed.

<span class="mw-page-title-main">Fluorescence microscope</span> Optical microscope that uses fluorescence and phosphorescence

A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microscope" refers to any microscope that uses fluorescence to generate an image, whether it is a simple set up like an epifluorescence microscope or a more complicated design such as a confocal microscope, which uses optical sectioning to get better resolution of the fluorescence image.

<span class="mw-page-title-main">DAPI</span> Fluorescent stain

DAPI, or 4′,6-diamidino-2-phenylindole, is a fluorescent stain that binds strongly to adenine–thymine-rich regions in DNA. It is used extensively in fluorescence microscopy. As DAPI can pass through an intact cell membrane, it can be used to stain both live and fixed cells, though it passes through the membrane less efficiently in live cells and therefore provides a marker for membrane viability.

Cyanines, also referred to as tetramethylindo(di)-carbocyanines are a synthetic dye family belonging to the polymethine group. Although the name derives etymologically from terms for shades of blue, the cyanine family covers the electromagnetic spectrum from near IR to UV.

Bacterial display is a protein engineering technique used for in vitro protein evolution. Libraries of polypeptides displayed on the surface of bacteria can be screened using flow cytometry or iterative selection procedures (biopanning). This protein engineering technique allows us to link the function of a protein with the gene that encodes it. Bacterial display can be used to find target proteins with desired properties and can be used to make affinity ligands which are cell-specific. This system can be used in many applications including the creation of novel vaccines, the identification of enzyme substrates and finding the affinity of a ligand for its target protein.

<span class="mw-page-title-main">Paratope</span> Part of an antibody which binds to an antigen

In immunology, a paratope, also known as an antigen-binding site, is the part of an antibody which recognizes and binds to an antigen. It is a small region at the tip of the antibody's antigen-binding fragment and contains parts of the antibody's heavy and light chains. Each paratope is made up of six complementarity-determining regions - three from each of the light and heavy chains - that extend from a fold of anti-parallel beta sheets. Each arm of the Y-shaped antibody has an identical paratope at the end.

<span class="mw-page-title-main">Cytomics</span> Single-cell biology and biochemistry

Cytomics is the study of cell biology (cytology) and biochemistry in cellular systems at the single cell level. It combines all the bioinformatic knowledge to attempt to understand the molecular architecture and functionality of the cell system (Cytome). Much of this is achieved by using molecular and microscopic techniques that allow the various components of a cell to be visualised as they interact in vivo.

<span class="mw-page-title-main">Cytometry</span> Measurement of number and characteristics of cells

Cytometry is the measurement of number and characteristics of cells. Variables that can be measured by cytometric methods include cell size, cell count, cell morphology, cell cycle phase, DNA content, and the existence or absence of specific proteins on the cell surface or in the cytoplasm. Cytometry is used to characterize and count blood cells in common blood tests such as the complete blood count. In a similar fashion, cytometry is also used in cell biology research and in medical diagnostics to characterize cells in a wide range of applications associated with diseases such as cancer and AIDS.

<span class="mw-page-title-main">Robert F. Murphy (computational biologist)</span>

Robert F. Murphy is Ray and Stephanie Lane Professor of Computational Biology Emeritus and Director of the M.S. Program in Automated Science at Carnegie Mellon University. Prior to his retirement in May 2021, he was the Ray and Stephanie Lane Professor of Computational Biology as well as Professor of Biological Sciences, Biomedical Engineering, and Machine Learning. He was founding Director of the Center for Bioimage Informatics at Carnegie Mellon and founded the Joint CMU-Pitt Ph.D. Program in Computational Biology. He also founded the Computational Biology Department at Carnegie Mellon University and served as its head from 2009 to 2020.

<span class="mw-page-title-main">Light sheet fluorescence microscopy</span> Fluorescence microscopy technique

Light sheet fluorescence microscopy (LSFM) is a fluorescence microscopy technique with an intermediate-to-high optical resolution, but good optical sectioning capabilities and high speed. In contrast to epifluorescence microscopy only a thin slice of the sample is illuminated perpendicularly to the direction of observation. For illumination, a laser light-sheet is used, i.e. a laser beam which is focused only in one direction. A second method uses a circular beam scanned in one direction to create the lightsheet. As only the actually observed section is illuminated, this method reduces the photodamage and stress induced on a living sample. Also the good optical sectioning capability reduces the background signal and thus creates images with higher contrast, comparable to confocal microscopy. Because light sheet fluorescence microscopy scans samples by using a plane of light instead of a point, it can acquire images at speeds 100 to 1,000 times faster than those offered by point-scanning methods.

Flow cytometry bioinformatics is the application of bioinformatics to flow cytometry data, which involves storing, retrieving, organizing and analyzing flow cytometry data using extensive computational resources and tools. Flow cytometry bioinformatics requires extensive use of and contributes to the development of techniques from computational statistics and machine learning. Flow cytometry and related methods allow the quantification of multiple independent biomarkers on large numbers of single cells. The rapid growth in the multidimensionality and throughput of flow cytometry data, particularly in the 2000s, has led to the creation of a variety of computational analysis methods, data standards, and public databases for the sharing of results.

The toponome is the spatial network code of proteins and other biomolecules in morphologically intact cells and tissues. It is mapped and decoded by imaging cycler microscopy (ICM) in situ able to co-map many thousand supermolecules in one sample. The term "toponome" is derived from the ancient Greek nouns "topos" and "nomos", and the term "toponomics" refers to the study of the toponome. It was introduced by Walter Schubert in 2003. It addresses the fact that the network of biomolecules in cells and tissues follows topological rules enabling coordinated actions. For example, the cell surface toponome provides the spatial protein interaction code for the execution of a cell movement, a "code of conduct". This is intrinsically dependent on the specific spatial arrangement of similar and dissimilar compositions of supermolecules with a specific spatial order along a cell surface membrane. This spatial order is periodically repeated when the cell tries to enter the exploratory state from the spherical state. This spatial toponome code is hierarchically organized with lead biomolecule(s), anti-colocated (absent) biomolecule(s) and wildcard molecules which are variably associated with the lead biomolecule(s). It has been shown that inhibition of lead molecule(s) in a surface membrane leads to disassembly of the corresponding biomolecular network and loss of function.

Toponomics is a discipline in systems biology, molecular cell biology, and histology concerning the study of the toponome of organisms. It is the field of study that purposes to decode the complete toponome in health and disease —which is the next big challenge in human biotechnology after having decoded the human genome.

References

Further reading