Implant induction welding of thermoplastics

Last updated

Implant induction welding is a joining method used in plastic manufacturing. The welding process uses an induction coil to excite and heat electromagnetically susceptible material at the joint interface and melt the thermoplastic. The susceptible material can be contained in a gasket placed between the welding surface, or within the actual components of a composite material. Its usage is common for large, unusually shaped, or delicate parts that would be difficult to weld through other methods.

Contents

Physical mechanisms

In non-magnetic electrical conductors like aluminum, nickel, or copper, an alternating electromagnetic field will induce Eddy currents in the material. These currents generate thermal energy through Joule heating. Ferromagnetic materials like iron and carbon steels will see heating from both Eddy current formation and hysteresis losses. [1]

Welding process

Material considerations

Induction heating is an efficient method of heating electrically conductive or magnetic materials. Warm-up times are minimal and direct contact with the part is not needed. Unfortunately most thermoplastics are non-magnetic and excellent insulators. To take advantage of induction heating for thermoplastic welding purposes, a susceptible implant must be used as an intermediary material. Nearly any electrical conductor or ferromagnetic material may be used as an implant. Implant styles include meshes, fibers, and fine powders. The most common gasket design is a thermoplastic composite with suspended susceptible fibers. . This composite gasket can be formed into any shape required for the welding application. The gasket matrix is typically made of the same thermoplastic being welded. In situations where two dissimilar materials are to be welded, the gasket material is usually a blend of the two thermoplastics. [2]

Composite materials

Carbon fiber is of interest due to its widespread use in composite materials. Provided there are closed loops of carbon within the composite structure, eddy currents can be induced in the material. Unidirectional carbon fiber composites can have poor susceptibility when fiber to fiber contact is limited. [3]

Focusing heat only at the weld point is difficult with susceptible composite fibers throughout the material. In carbon fiber composites, thin electrically insulating layers with non-aligned fibers may be inserted between conducting layers to electrically isolate the joint surface from the material bulk. Using this technique, induction heating of the bulk is avoided. [4]

Equipment

An induction generator is used to produce high frequency current in the range of 2 to 10 MHz. [5] The range used is regulated by the FCC to avoid interference with broadcast signals.

An induction coil converts the high frequency current from the induction generator into the necessary alternating magnetic field. A single turn coil may be used when space is limited, however multiturn coil designs are more common due to their generation of a stronger and deeper penetrating magnetic field. Split coil designs are also available, which may be dissasembeled to fully surround a large part such as plastic piping. [2] The high currents used in induction welding produce large amounts of heat in the coil. To avoid overheating, the coil turns are made with hollow tubing, and water is circulated during welding. Coil heat is dissipated by an attached heat exchanger. [1]

Fixtures are used to hold the parts in position during welding. One fixture is fixed and the other moveable so that a press may apply and maintain pressure during heating and cooling. [1]

Welding steps

Steps of implant induction welding in a tongue in groove joint. Welding of Implant Induction Joint.png
Steps of implant induction welding in a tongue in groove joint.

An implant rich gasket is placed at the surface to be welded. Pressure is applied to the joint to force out air cavities and ensure a sound bond. An electromagnetic field is applied by the induction coil to heat the implants, and pressure is applied to the joint. Heat conducts into the surrounding thermoplastic, which melts the gasket and creates a melt layer at the joint surfaces. The applied pressure flows the molten thermoplastic and fills the joint. When sufficient bonding has been achieved, the induction coil is turned off and the joint is cooled under pressure. For large items with long joints, the joint can be welded continuously by scanning the active coil along the length of the interface. [2]

Parameters

Power

Typical induction generators provide a power output of 1 to 5 kW. High power output is necessary for longer and larger joints. Power output must also be increased as coil distance from the joint increases, due to electromagnetic field decay. [1]

Pressure

Even distribution of the molten polymer in the joint is imperative for strong bonding. Weld pressure must be sufficient to induce squeeze flow in the molten gasket, achieve intimate contact with the joint surface, and fill the joint. [2]

Weld time and cooling time

A flat to flat and flat to groove joint used in implant induction welding. Implant Induction Welding Joints.png
A flat to flat and flat to groove joint used in implant induction welding.

Weld time will vary based on the joint size, the volume of susceptible implant material, and the power and frequency. Cycle times can be very fast since no preheating is needed, and heat generation happens exclusively at the weld joint. This also benefits the cooling time. With little heat wasted on the bulk of the part, cooling is brief. Under 1 second for some applications. [1]

Joint design

Unusual joint designs are possible using implant induction welding. The simplest is the flat to flat joint, where a gasket is placed between two thermoplastic plates. This joint is common for continuous welding processes, or long weld lines where the active coil is scanned along the joint interface. The flat to groove joint uses a plate with a channel to accurately align the weld versus the flat to flat joint. The tongue in groove joint is similar to the flat to groove joint, but has the advantage of complete encapsulation of the gasket and a pressure tight seal. [2]

Applications

Food packaging

Tetra Pak containers sealed by implant induction welding Tetra Pak packaging portfolio I medium size.jpg
Tetra Pak containers sealed by implant induction welding

Implant induction welding is heavily used in the production of Tetra Pak containers for products like juice boxes. [1] The use of induction heating shortens the sealing time versus other joining methods that use external heat, and avoids damage to the paperboard layer from direct contact with hot tooling. An aluminum foil layer is used to block oxygen diffusion into the packaging, so no additional implant material is needed. [6]

Automotive manufacturing

The automotive industry makes large scale use of implant induction welding for the manufacture of large plastic items such as bumpers, plastic body panels, and fuel tanks. [7] Manufacturing costs of components with complex geometries are brought down by manufacturing the parts in separate pieces, to be assembled later using induction welding. [8]

Tamper-proof packaging

Polyethylene coated aluminum foil is induction welded to the top of many food, supplement, and drug containers. The seal helps retain product quality and provides evidence of tampering. [9]

Advantages and disadvantages

Advantages

Disadvantages

Related Research Articles

<span class="mw-page-title-main">Welding</span> Fabrication process for joining materials

Welding is a fabrication process that joins materials, usually metals or thermoplastics, primarily by using high temperature to melt the parts together and allow them to cool, causing fusion. Common alternative methods include solvent welding using chemicals to melt materials being bonded without heat, and solid-state welding processes which bond without melting, such as pressure, cold welding, and diffusion bonding.

Induction welding is a form of welding that uses electromagnetic induction to heat the workpiece. The welding apparatus contains an induction coil that is energised with a radio-frequency electric current. This generates a high-frequency electromagnetic field that acts on either an electrically conductive or a ferromagnetic workpiece. In an electrically conductive workpiece, the main heating effect is resistive heating, which is due to induced currents called eddy currents. In a ferromagnetic workpiece, the heating is caused mainly by hysteresis, as the electromagnetic field repeatedly distorts the magnetic domains of the ferromagnetic material. In practice, most materials undergo a combination of these two effects.

<span class="mw-page-title-main">Lamination</span> Technique of fusing layers of material

Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materials, such as plastic. A laminate is a layered object or material assembled using heat, pressure, welding, or adhesives. Various coating machines, machine presses and calendering equipment are used.

<span class="mw-page-title-main">Induction heating</span> Process of heating an electrically conducting object by electromagnetic induction

Induction heating is the process of heating electrically conductive materials, namely metals or semi-conductors, by electromagnetic induction, through heat transfer passing through an inductor that creates an electromagnetic field within the coil to heat up and possibly melt steel, copper, brass, graphite, gold, silver, aluminum, or carbide.

<span class="mw-page-title-main">Ultrasonic welding</span> Welding process

Ultrasonic welding is an industrial process whereby high-frequency ultrasonic acoustic vibrations are locally applied to work pieces being held together under pressure to create a solid-state weld. It is commonly used for plastics and metals, and especially for joining dissimilar materials. In ultrasonic welding, there are no connective bolts, nails, soldering materials, or adhesives necessary to bind the materials together. When used to join metals, the temperature stays well below the melting point of the involved materials, preventing any unwanted properties which may arise from high temperature exposure of the metal.

<span class="mw-page-title-main">Plastic welding</span> Welding of semi-finished plastic materials

Plastic welding is welding for semi-finished plastic materials, and is described in ISO 472 as a process of uniting softened surfaces of materials, generally with the aid of heat. Welding of thermoplastics is accomplished in three sequential stages, namely surface preparation, application of heat and pressure, and cooling. Numerous welding methods have been developed for the joining of semi-finished plastic materials. Based on the mechanism of heat generation at the welding interface, welding methods for thermoplastics can be classified as external and internal heating methods, as shown in Fig 1.

<span class="mw-page-title-main">Induction cooking</span> Direct induction heating of cooking vessels

Induction cooking is performed using direct electrical induction heating of cooking vessels, rather than relying on indirect radiation, convection, or thermal conduction. Induction cooking allows high power and very rapid increases in temperature to be achieved: changes in heat settings are instantaneous.

<span class="mw-page-title-main">Electromagnetic forming</span>

Electromagnetic forming is a type of high-velocity, cold forming process for electrically conductive metals, most commonly copper and aluminium. The workpiece is reshaped by high-intensity pulsed magnetic fields that induce a current in the workpiece and a corresponding repulsive magnetic field, rapidly repelling portions of the workpiece. The workpiece can be reshaped without any contact from a tool, although in some instances the piece may be pressed against a die or former. The technique is sometimes called high-velocity forming or electromagnetic pulse technology.

<span class="mw-page-title-main">Heat sealer</span> Machine for joining thermoplastic materials using heat

A heat sealer is a machine used to seal products, packaging, and other thermoplastic materials using heat. This can be with uniform thermoplastic monolayers or with materials having several layers, at least one being thermoplastic. Heat sealing can join two similar materials together or can join dissimilar materials, one of which has a thermoplastic layer.

Induction hardening is a type of surface hardening in which a metal part is induction-heated and then quenched. The quenched metal undergoes a martensitic transformation, increasing the hardness and brittleness of the part. Induction hardening is used to selectively harden areas of a part or assembly without affecting the properties of the part as a whole.

<span class="mw-page-title-main">Induction sealing</span> Process of bonding thermoplastic materials by induction heating

Induction sealing is the process of bonding thermoplastic materials by induction heating. This involves controlled heating an electrically conducting object by electromagnetic induction, through heat generated in the object by eddy currents.

Hot plate welding, also called heated tool welding, is a thermal welding technique for joining thermoplastics. A heated tool is placed against or near the two surfaces to be joined in order to melt them. Then, the heat source is removed, and the surfaces are brought together under pressure. Hot plate welding has relatively long cycle times, ranging from 10 seconds to minutes, compared to vibration or ultrasonic welding. However, its simplicity and ability to produce strong joints in almost all thermoplastics make it widely used in mass production and for large structures, like large-diameter plastic pipes. Different inspection techniques are implemented in order to identify various discontinuities or cracks.

Vibration welding refers to a process in which two workpieces are brought in contact under pressure, and a reciprocating motion (vibration) is applied along the common interface in order to generate heat. The resulting heat melts the workpieces, and they become welded when the vibration stops and the interface cools. Most machinery operates at 120 Hz, although equipment is available that runs between 100 and 240 Hz. Vibration can be achieved either through linear vibration welding, which uses a one dimensional back and forth motion, or orbital vibration welding which moves the pieces in small orbits relative to each other. Linear vibration welding is more common due to simpler and relatively cheaper machinery required.

Electrofusion welding is a form of resistive implant welding used to join pipes. A fitting with implanted metal coils is placed around two ends of pipes to be joined, and current is passed through the coils. Resistive heating of the coils melts small amounts of the pipe and fitting, and upon solidification, a joint is formed. It is most commonly used to join polyethylene (PE) and polypropylene (PP) pipes. Electrofusion welding is the most common welding technique for joining PE pipes. Because of the consistency of the electrofusion welding process in creating strong joints, it is commonly employed for the construction and repair of gas-carrying pipelines. The development of the joint strength is affected by several process parameters, and a consistent joining procedure is necessary for the creation of strong joints.

Welding of advanced thermoplastic composites is a beneficial method of joining these materials compared to mechanical fastening and adhesive bonding. Mechanical fastening requires intense labor, and creates stress concentrations, while adhesive bonding requires extensive surface preparation, and long curing cycles. Welding these materials is a cost-effective method of joining concerning preparation and execution, and these materials retain their properties upon cooling, so no post processing is necessary. These materials are widely used in the aerospace industry to reduce weight of a part while keeping strength.

Laser welding of polymers is a set of methods used to join polymeric components through the use of a laser. It can be performed using CO2 lasers, Nd:YAG lasers, Diode lasers and Fiber lasers.

Advanced thermoplastic composites (ACM) have a high strength fibres held together by a thermoplastic matrix. Advanced thermoplastic composites are becoming more widely used in the aerospace, marine, automotive and energy industry. This is due to the decreasing cost and superior strength to weight ratios, over metallic parts. Advance thermoplastic composite have excellent damage tolerance, corrosion resistant, high fracture toughness, high impact resistance, good fatigue resistance, low storage cost, and infinite shelf life. Thermoplastic composites also have the ability to be formed and reformed, repaired and fusion welded.

Radio-frequency welding, also known as dielectric welding and high-frequency welding, is a plastic welding process that utilizes high-frequency electric fields to induce heating and melting of thermoplastic base materials. The electric field is applied by a pair of electrodes after the parts being joined are clamped together. The clamping force is maintained until the joint solidifies. Advantages of this process are fast cycle times, automation, repeatability, and good weld appearance. Only plastics which have dipoles can be heated using radio waves and therefore not all plastics are able to be welded using this process. Also, this process is not well suited for thick or overly complex joints. The most common use of this process is lap joints or seals on thin plastic sheets or parts.

IR welding is a welding technique that uses a non-contact heating method to melt and fuse thermoplastic parts together using the energy from infrared radiation. The process was first developed in the late 1900s, but due to the high capital cost of IR equipment the process was not commonly applied in industry until prices dropped in the 1990s. IR welding typically uses a range of wavelengths from 800 to 11,000 nm on the electromagnetic spectrum to heat, melt, and fuse the interface between two plastic parts through the absorption and conversion of the IR energy into heat. Laser welding is a similar joining process that applies IR radiation at a single wavelength.

Implant resistance welding is a method used in welding to join thermoplastics and thermoplastic composites.

References

  1. 1 2 3 4 5 6 7 8 Grewell, David A.; Benatar, Avraham; Park, Joon Bu, eds. (2003). Plastics and composites welding handbook. Munich: Hanser Gardener. ISBN   1569903131. OCLC   51728694.
  2. 1 2 3 4 5 6 7 8 Troughton, Michael John, ed. (2008). Handbook of plastics joining : a practical guide (2nd ed.). Norwich, NY: William Andrew. ISBN   9780815519768. OCLC   302420421.
  3. Rudolf, R.; Mitschang, P.; Neitzel, M. (November 2000). "Induction heating of continuous carbon-fibre-reinforced thermoplastics". Composites Part A. 31 (11): 1191–1202. doi:10.1016/S1359-835X(00)00094-4.
  4. Worrall, C.M.; Wise, R.J. (June 2014). "Novel Induction Heating Technique For Joining of Carbon Fibre Composites" (PDF). European Conference on Composite Materials.
  5. 1 2 3 4 Banik, Nabanita (October 2018). "A review on the use of thermoplastic composites and their effects in induction welding method". Materials Today: Proceedings. 8 (9, pt. 3): 20239–20249. doi:10.1016/j.matpr.2018.06.395.
  6. Babini, A. (2003). "3D FEM models for numerical simulation of induction sealing of packaging material". COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 22 (1): 170–180. doi:10.1108/03321640310452268.
  7. Watson, Martin N. (1986). "Welding Plastics for the Automotive Industry". SAE Transactions. 95 (§3): 659–667. JSTOR   44725420.
  8. "Emabond Solutions - Electro-Magnetic Assembly-Bonding". www.emabond.com. Archived from the original on 2019-02-19. Retrieved 2019-02-25.
  9. "Welding and joining techniques for polymeric medical devices". twi-global.com. Retrieved 2019-02-25.
  10. Amanat, Negine; James, Natalie L.; McKenzie, David R. (April 2010). "Welding methods for joining thermoplastic polymers for the hermeticenclosure of medical devices" (PDF). Medical Engineering & Physics. 32 (7): 690–699. doi:10.1016/j.medengphy.2010.04.011. PMID   20570545. S2CID   1199689. Archived from the original (PDF) on 2019-04-08 via Elsevier ScienceDirect.