In mathematics, particularly in algebra, an indeterminate equation is an equation for which there is more than one solution. [1] For example, the equation is a simple indeterminate equation, as is . Indeterminate equations cannot be solved uniquely. In fact, in some cases it might even have infinitely many solutions. [2] Some of the prominent examples of indeterminate equations include:
Univariate polynomial equation :
which has multiple solutions for the variable in the complex plane—unless it can be rewritten in the form .
Non-degenerate conic equation:
where at least one of the given parameters , , and is non-zero, and and are real variables.
where is a given integer that is not a square number, and in which the variables and are required to be integers.
The equation of Pythagorean triples :
in which the variables , , and are required to be positive integers.
The equation of the Fermat–Catalan conjecture :
in which the variables , , are required to be coprime positive integers, and the variables , , and are required to be positive integers satisfying the following equation:
In mathematics, Bézout's identity, named after Étienne Bézout, is the following theorem:
In mathematics, a Diophantine equation is a polynomial equation, usually involving two or more unknowns, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a constant the sum of two or more monomials, each of degree one. An exponential Diophantine equation is one in which unknowns can appear in exponents.
In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which, after a linear change of variables, consists of solutions (x,y) for:
In mathematics, a linear equation is an equation that may be put in the form
In mathematics, a polynomial is an expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponentiation of variables. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example in three variables is x3 + 2xyz2 − yz + 1.
In algebra, a quadratic equation is any equation that can be rearranged in standard form as
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and determines various properties of the roots. It is generally defined as a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry. It is often denoted by the symbol .
In mathematics, a system of linear equations is a collection of one or more linear equations involving the same variables. For example,
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the column vector of right-hand-sides of the equations. It is named after Gabriel Cramer (1704–1752), who published the rule for an arbitrary number of unknowns in 1750, although Colin Maclaurin also published special cases of the rule in 1748.
In algebra, a quadratic function, a quadratic polynomial, a polynomial of degree 2, or simply a quadratic, is a polynomial function with one or more variables in which the highest-degree term is of the second degree.
In mathematics, a quadratic form is a polynomial with terms all of degree two. For example,
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.
In algebra, a monic polynomial is a single-variable polynomial in which the leading coefficient is equal to 1. Therefore, a monic polynomial has the form:
In mathematics, an algebraic equation or polynomial equation is an equation of the form
In mathematics, to solve an equation is to find its solutions, which are the values that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values such that, when substituted for the unknowns, the equation becomes an equality. A solution of an equation is often called a root of the equation, particularly but not only for polynomial equations. The set of all solutions of an equation is its solution set.
In mathematics, Puiseux series are a generalization of power series that allow for negative and fractional exponents of the indeterminate. For example, the series
In mathematics, a variable is a symbol and placeholder for (historically) a quantity that may change, or (nowadays) any mathematical object. In particular, a variable may represent a number, a vector, a matrix, a function, the argument of a function, a set, or an element of a set.
In mathematics, an algebraic expression is an expression built up from integer constants, variables, and the algebraic operations. For example, 3x2 − 2xy + c is an algebraic expression. Since taking the square root is the same as raising to the power 1/2, the following is also an algebraic expression:
Algebra can essentially be considered as doing computations similar to those of arithmetic but with non-numerical mathematical objects. However, until the 19th century, algebra consisted essentially of the theory of equations. For example, the fundamental theorem of algebra belongs to the theory of equations and is not, nowadays, considered as belonging to algebra.