Indoor Environmental Quality Global Alliance

Last updated
IEQ-GA logo Indoor Environmental Quality Global Alliance logo.jpg
IEQ-GA logo

The Indoor Environmental Quality Global Alliance (IEQ-GA) was initiated in 2014 [1] [2] [3] aiming to improve the actual, delivered indoor environmental quality in buildings through coordination, education, outreach and advocacy. The alliance works to supply information, guidelines and knowledge on the indoor environmental quality (IEQ) in buildings and workplaces, [4] and to provide occupants in buildings and workplaces with an acceptable indoor environmental quality (indoor air quality (IAQ), thermal conditions, visual quality, and acoustical quality) and help promote implementation in practice of knowledge from research on the field.

Contents

The group has already begun work to collect and critique IEQ standards and is organising and presenting programmes at the conferences of member organisations [5] [6] [7] [8] [9] and others.

The Alliance was launched on June 29, 2014 during ASHRAE’s 2014 Annual Conference in Seattle by the signing of a memorandum of understanding between AIHA, AIVC, ASHRAE, A&WMA, IAQA, and REHVA. [10] The Alliance was formed by an ad hoc committee appointed by ASHRAE 2013-14 President Bill Bahnfleth to explore ways in which industry groups could work together to address all aspects of indoor environmental quality and health [11]

IEQ-GA was incorporated as a non-profit organization in Belgium in 2019 with ACGIH, AiCARR, AIHA, AIVC, ASHRAE, ISHRAE, and REHVA as founding members of the corporation. [12] [13] [14] The incorporation ceremony took place during the 40th Annual Conference of AIVC on October 15-16, 2019.

IEQ-GA members

The IEQ-GA has the following full members:

The IEQ-GA has the following affiliate members:

Related Research Articles

<span class="mw-page-title-main">Heating, ventilation, and air conditioning</span> Technology of indoor and vehicular environmental comfort

Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a subdiscipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. "Refrigeration" is sometimes added to the field's abbreviation as HVAC&R or HVACR, or "ventilation" is dropped, as in HACR.

<span class="mw-page-title-main">Indoor air quality</span> Air quality within and around buildings and structures

Indoor air quality (IAQ) is the air quality within and around buildings and structures. IAQ is known to affect the health, comfort, and well-being of building occupants. Poor indoor air quality has been linked to sick building syndrome, reduced productivity, and impaired learning in schools. Common pollutants of indoor air include: Secondhand tobacco smoke, air pollutants from indoor combustion, radon, molds and other allergens, carbon monoxide, volatile organic compounds, legionella and other bacteria, asbestos fibers, carbon dioxide, ozone and particulates. Source control, filtration, and the use of ventilation to dilute contaminants are the primary methods for improving indoor air quality in most buildings.

<span class="mw-page-title-main">Ventilation (architecture)</span> Intentional introduction of outside air into a space

Ventilation is the intentional introduction of outdoor air into a space. Ventilation is mainly used to control indoor air quality by diluting and displacing indoor pollutants; it can also be used to control indoor temperature, humidity, and air motion to benefit thermal comfort, satisfaction with other aspects of the indoor environment, or other objectives.

<span class="mw-page-title-main">Building science</span>

Building science is the science and technology-driven collection of knowledge in order to provide better indoor environmental quality (IEQ), energy-efficient built environments, and occupant comfort and satisfaction. Building physics, architectural science, and applied physics are terms used for the knowledge domain that overlaps with building science. In building science, the methods used in natural and hard sciences are widely applied, which may include controlled and quasi-experiments, randomized control, physical measurements, remote sensing, and simulations. On the other hand, methods from social and soft sciences, such as case study, interviews & focus group, observational method, surveys, and experience sampling, are also widely used in building science to understand occupant satisfaction, comfort, and experiences by acquiring qualitative data. One of the recent trends in building science is a combination of the two different methods. For instance, it is widely known that occupants’ thermal sensation and comfort may vary depending on their sex, age, emotion, experiences, etc. even in the same indoor environment. Despite the advancement in data extraction and collection technology in building science, objective measurements alone can hardly represent occupants' state of mind such as comfort and preference. Therefore, researchers are trying to measure both physical contexts and understand human responses to figure out complex interrelationships.

Displacement ventilation (DV) It is a room air distribution strategy where conditioned outdoor air is supplied at a low velocity from air supply diffusers located near floor level and extracted above the occupied zone, usually at ceiling height.

<span class="mw-page-title-main">Energy recovery ventilation</span> Uses the energy in air exhausted from a building to treat the incoming air

Energy recovery ventilation (ERV) is the energy recovery process in residential and commercial HVAC systems that exchanges the energy contained in normally exhausted air of a building or conditioned space, using it to treat (precondition) the incoming outdoor ventilation air. The specific equipment involved may be called an Energy Recovery Ventilator, also abbreviated ERV.

<span class="mw-page-title-main">Center for the Built Environment</span>

The Center for the Built Environment (CBE) is a research center at the University of California, Berkeley. CBE's mission is to improve the environmental quality and energy efficiency of buildings by providing timely, unbiased information on building technologies and design techniques. CBE's work is supported by a consortium of building industry leaders, including manufacturers, building owners, contractors, architects, engineers, utilities, and government agencies. The CBE also maintains an online newsletter of the center's latest activities called Centerline.

<span class="mw-page-title-main">Passive ventilation</span>

Passive ventilation is the process of supplying air to and removing air from an indoor space without using mechanical systems. It refers to the flow of external air to an indoor space as a result of pressure differences arising from natural forces.

Infiltration is the unintentional or accidental introduction of outside air into a building, typically through cracks in the building envelope and through use of doors for passage. Infiltration is sometimes called air leakage. The leakage of room air out of a building, intentionally or not, is called exfiltration. Infiltration is caused by wind, negative pressurization of the building, and by air buoyancy forces known commonly as the stack effect.

Building services engineering is a professional engineering discipline that strives to achieve a safe and comfortable indoor environment whilst minimizing the environmental impact of a building.

Air changes per hour, abbreviated ACPH or ACH, or air change rate is the number of times that the total air volume in a room or space is completely removed and replaced in an hour. If the air in the space is either uniform or perfectly mixed, air changes per hour is a measure of how many times the air within a defined space is replaced each hour. Perfectly mixed air refers to a theoretical condition where supply air is instantly and uniformly mixed with the air already present in a space, so that conditions such as age of air and concentration of pollutants are spatially uniform.

<span class="mw-page-title-main">Dedicated outdoor air system</span>

A dedicated outdoor air system (DOAS) is a type of heating, ventilation and air-conditioning (HVAC) system that consists of two parallel systems: a dedicated system for delivering outdoor air ventilation that handles both the latent and sensible loads of conditioning the ventilation air, and a parallel system to handle the loads generated by indoor/process sources and those that pass through the building enclosure.

Airflow, or air flow, is the movement of air. The primary cause of airflow is the existence of air. Air behaves in a fluid manner, meaning particles naturally flow from areas of higher pressure to those where the pressure is lower. Atmospheric air pressure is directly related to altitude, temperature, and composition.

<span class="mw-page-title-main">Radiant heating and cooling</span> Category of HVAC technologies

Radiant heating and cooling is a category of HVAC technologies that exchange heat by both convection and radiation with the environments they are designed to heat or cool. There are many subcategories of radiant heating and cooling, including: "radiant ceiling panels", "embedded surface systems", "thermally active building systems", and infrared heaters. According to some definitions, a technology is only included in this category if radiation comprises more than 50% of its heat exchange with the environment; therefore technologies such as radiators and chilled beams are usually not considered radiant heating or cooling. Within this category, it is practical to distinguish between high temperature radiant heating, and radiant heating or cooling with more moderate source temperatures. This article mainly addresses radiant heating and cooling with moderate source temperatures, used to heat or cool indoor environments. Moderate temperature radiant heating and cooling is usually composed of relatively large surfaces that are internally heated or cooled using hydronic or electrical sources. For high temperature indoor or outdoor radiant heating, see: Infrared heater. For snow melt applications see: Snowmelt system.

<span class="mw-page-title-main">Air Infiltration and Ventilation Centre</span>

Air Infiltration and Ventilation Centre (AIVC) is the International Energy Agency information centre on energy efficient ventilation of buildings.

Building airtightness can be defined as the resistance to inward or outward air leakage through unintentional leakage points or areas in the building envelope. This air leakage is driven by differential pressures across the building envelope due to the combined effects of stack, external wind and mechanical ventilation systems.

<span class="mw-page-title-main">ASHRAE</span> American HVAC professional association

The American Society of Heating, Refrigerating and Air-Conditioning Engineers is an American professional association seeking to advance heating, ventilation, air conditioning and refrigeration (HVAC&R) systems design and construction. ASHRAE has over 50,000 members in more than 130 countries worldwide.

<span class="mw-page-title-main">Venticool</span>

Venticool is an international platform formed in 2012 focusing on ventilative cooling issues, with the overall goal to "boost awareness, communication, networking and steering research and development efforts in the field" . In 2020, venticool's focus was broadened towards resilient ventilative cooling.

Ductwork airtightness can be defined as the resistance to inward or outward air leakage through the ductwork envelope. This air leakage is driven by differential pressures across the ductwork envelope due to the combined effects of stack and fan operation.

<span class="mw-page-title-main">Dusan Licina</span> Serbian engineer and scientist

Dusan Licina is an engineer and researcher specializing in indoor air quality, building ventilation, and human exposure. He is a professor at EPFL and head of the Human-Oriented Built Environment Laboratory.

References

  1. American Society of Heating, Refrigerating and Air-Conditioning Engineers - ASHRAE: "ASHRAE Insights, August 2014"
  2. Jessica Lyons Hardcastle, "Indoor Environmental Quality Alliance Formed", Environmental Leader, July 2014
  3. Governo Law Firm, "Newly Formed Alliance: Premier Resource for Indoor Environmental Quality", July 2014
  4. BUILD UP energy solutions for better buildings, "International Societies form Indoor Environmental Quality – Global Alliance (IEQ-GA)", 2014
  5. ASHRAE: "SEMINAR 8 Indoor environmental quality: a global and holistic perspective, part 1", 2015
  6. ASHRAE: "SEMINAR 8 Indoor environmental quality: a global and holistic perspective, part 2", 2015
  7. Air Infiltration and Ventilation Centre - AIVC: "Indoor Environmental Quality Global Alliance first sessions at the June 2015 ASHRAE Annual conference", September 2015
  8. Air Infiltration and Ventilation Centre - AIVC, "36th AIVC Conference Programme", September 2015
  9. Bahnfleth, William P.; Sekhar, Chandra (2018-02-07). "IAQ 2016: Defining indoor air quality: Policy, standards and best practices". Science and Technology for the Built Environment. 24 (2): 115–117. doi: 10.1080/23744731.2017.1417068 . ISSN   2374-4731.
  10. venticool: "International Societies form Indoor Environmental Quality – Global Alliance (IEQ-GA)", 2014
  11. ASHRAE: "Indoor Environmental Quality--Global Alliance (IEQ-GA)", 2015
  12. "ASHRAE Celebrates Incorporation of IEQ-GA". www.ashrae.org. Retrieved 2019-11-26.
  13. REHVA: "REHVA proudly announces the creation of the Indoor Environment Global Alliance", 2019
  14. AIVC: "AIVC proudly announces the creation of the Indoor Environment Global Alliance"