Infrared fixed point

Last updated

In physics, an infrared fixed point is a set of coupling constants, or other parameters, that evolve from arbitrary initial values at very high energies (short distance) to fixed, stable values, usually predictable, at low energies (large distance). [1] This usually involves the use of the renormalization group, which specifically details the way parameters in a physical system (a quantum field theory) depend on the energy scale being probed.

Contents

Conversely, if the length-scale decreases and the physical parameters approach fixed values, then we have ultraviolet fixed points. The fixed points are generally independent of the initial values of the parameters over a large range of the initial values. This is known as universality.

Statistical physics

In the statistical physics of second order phase transitions, the physical system approaches an infrared fixed point that is independent of the initial short distance dynamics that defines the material. This determines the properties of the phase transition at the critical temperature, or critical point. Observables, such as critical exponents usually depend only upon dimension of space, and are independent of the atomic or molecular constituents.

Top Quark

In the Standard Model, quarks and leptons have "Yukawa couplings" to the Higgs boson which determine the masses of the particles. Most of the quarks' and leptons' Yukawa couplings are small compared to the top quark's Yukawa coupling. Yukawa couplings are not constants and their properties change depending on the energy scale at which they are measured, this is known as running of the constants. The dynamics of Yukawa couplings are determined by the renormalization group equation:

where is the color gauge coupling (which is a function of and associated with asymptotic freedom [2] [3] ) and is the Yukawa coupling for the quark This equation describes how the Yukawa coupling changes with energy scale

A more complete version of the same formula is more appropriate for the top quark:

where g2 is the weak isospin gauge coupling and g1 is the weak hypercharge gauge coupling. For small or near constant values of g1 and g2 the qualitative behavior is the same.

The Yukawa couplings of the up, down, charm, strange and bottom quarks, are small at the extremely high energy scale of grand unification, Therefore, the term can be neglected in the above equation for all but the top quark. Solving, we then find that is increased slightly at the low energy scales at which the quark masses are generated by the Higgs,

On the other hand, solutions to this equation for large initial values typical for the top quark cause the expression on the right side to quickly approach zero as we descend in energy scale, which stops from changing and locks it to the QCD coupling This is known as a (infrared) quasi-fixed point of the renormalization group equation for the Yukawa coupling. [lower-alpha 1] No matter what the initial starting value of the coupling is, if it is sufficiently large at high energies to begin with, it will reach this quasi-fixed point value, and the corresponding quark mass is predicted to be about

The renormalization group equation for large values of the top Yukawa coupling was first considered in 1981 by Pendleton & Ross, [4] and the "infrared quasi-fixed point" was proposed by Hill. [5] The prevailing view at the time was that the top quark mass would lie in a range of 15 to 26 GeV. The quasi-infrared fixed point emerged in top quark condensation theories of electroweak symmetry breaking in which the Higgs boson is composite at extremely short distance scales, composed of a pair of top and anti-top quarks. [6]

While the value of the quasi-fixed point is determined in the Standard Model of about if there is more than one Higgs doublet, the value will be reduced by an increase in the  9 /2 factor in the equation, and any Higgs mixing angle effects. Since the observed top quark mass of 174 GeV is slightly lower than the standard model prediction by about 20%, this suggests there may be more Higgs doublets beyond the single standard model Higgs boson. If there are many additional Higgs doublets in nature the predicted value of the quasi-fixed point comes into agreement with experiment. [7] [8] Even if there are two Higgs doublets, the fixed point for the top mass is reduced, 170~200 GeV. Some theorists believed this was supporting evidence for the Supersymmetric Standard Model, however no other signs of supersymmetry have emerged at the Large Hadron Collider.

Banks–Zaks fixed point

Another example of an infrared fixed point is the Banks–Zaks fixed point in which the coupling constant of a Yang–Mills theory evolves to a fixed value. The beta-function vanishes, and the theory possesses a symmetry known as conformal symmetry. [9]


Footnotes

  1. The name "infrared" is metaphorical, since the effect is seen as energy decreases, by analogy with descent to light with lower energy than visible light. Effects which appear with rising energy are metaphorically called "ultraviolet".

See also

Related Research Articles

<span class="mw-page-title-main">Electroweak interaction</span> Unified description of electromagnetism and the weak interaction

In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV, they would merge into a single force. Thus, if the temperature is high enough – approximately 1015 K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been seen widely throughout the universe since before the quark epoch, and currently the highest human-made temperature in thermal equilibrium is around 5.5x1012 K (from the Large Hadron Collider).

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

<span class="mw-page-title-main">Top quark</span> Type of quark

The top quark, sometimes also referred to as the truth quark, is the most massive of all observed elementary particles. It derives its mass from its coupling to the Higgs boson. This coupling yt is very close to unity; in the Standard Model of particle physics, it is the largest (strongest) coupling at the scale of the weak interactions and above. The top quark was discovered in 1995 by the CDF and DØ experiments at Fermilab.

In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle.

<span class="mw-page-title-main">Technicolor (physics)</span> Hypothetical model through which W and Z bosons acquire mass

Technicolor theories are models of physics beyond the Standard Model that address electroweak gauge symmetry breaking, the mechanism through which W and Z bosons acquire masses. Early technicolor theories were modelled on quantum chromodynamics (QCD), the "color" theory of the strong nuclear force, which inspired their name.

In quantum field theory, Wilson loops are gauge invariant operators arising from the parallel transport of gauge variables around closed loops. They encode all gauge information of the theory, allowing for the construction of loop representations which fully describe gauge theories in terms of these loops. In pure gauge theory they play the role of order operators for confinement, where they satisfy what is known as the area law. Originally formulated by Kenneth G. Wilson in 1974, they were used to construct links and plaquettes which are the fundamental parameters in lattice gauge theory. Wilson loops fall into the broader class of loop operators, with some other notable examples being 't Hooft loops, which are magnetic duals to Wilson loops, and Polyakov loops, which are the thermal version of Wilson loops.

<span class="mw-page-title-main">Higgs mechanism</span> Mechanism that explains the generation of mass for gauge bosons

In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature. The view of the Higgs mechanism as involving spontaneous symmetry breaking of a gauge symmetry is technically incorrect since by Elitzur's theorem gauge symmetries can never be spontaneously broken. Rather, the Fröhlich–Morchio–Strocchi mechanism reformulates the Higgs mechanism in an entirely gauge invariant way, generally leading to the same results.

<span class="mw-page-title-main">Yang–Mills theory</span> Physical theory unifying the electromagnetic, weak and strong interactions

Yang–Mills theory is a quantum field theory for nuclear binding devised by Chen Ning Yang and Robert Mills in 1953, as well as a generic term for the class of similar theories. The Yang–Mills theory is a gauge theory based on a special unitary group SU(n), or more generally any compact Lie group. A Yang–Mills theory seeks to describe the behavior of elementary particles using these non-abelian Lie groups and is at the core of the unification of the electromagnetic force and weak forces (i.e. U(1) × SU(2)) as well as quantum chromodynamics, the theory of the strong force (based on SU(3)). Thus it forms the basis of the understanding of the Standard Model of particle physics.

<span class="mw-page-title-main">Hierarchy problem</span> Unsolved problem in physics

In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than gravity.

In particle physics, the Peccei–Quinn theory is a well-known, long-standing proposal for the resolution of the strong CP problem formulated by Roberto Peccei and Helen Quinn in 1977. The theory introduces a new anomalous symmetry to the Standard Model along with a new scalar field which spontaneously breaks the symmetry at low energies, giving rise to an axion that suppresses the problematic CP violation. This model has long since been ruled out by experiments and has instead been replaced by similar invisible axion models which utilize the same mechanism to solve the strong CP problem.

<span class="mw-page-title-main">Beta function (physics)</span> Function that encodes the dependence of a coupling parameter on the energy scale

In theoretical physics, specifically quantum field theory, a beta function, β(g), encodes the dependence of a coupling parameter, g, on the energy scale, μ, of a given physical process described by quantum field theory. It is defined as

In particle physics, Yukawa's interaction or Yukawa coupling, named after Hideki Yukawa, is an interaction between particles according to the Yukawa potential. Specifically, it is a scalar field ϕ and a Dirac field ψ of the type

In the theory of grand unification of particle physics, and, in particular, in theories of neutrino masses and neutrino oscillation, the seesaw mechanism is a generic model used to understand the relative sizes of observed neutrino masses, of the order of eV, compared to those of quarks and charged leptons, which are millions of times heavier. The name of the seesaw mechanism was given by Tsutomu Yanagida in a Tokyo conference in 1981.

In particle physics, the top quark condensate theory is an alternative to the Standard Model fundamental Higgs field, where the Higgs boson is a composite field, composed of the top quark and its antiquark. The top quark-antiquark pairs are bound together by a new force called topcolor, analogous to the binding of Cooper pairs in a BCS superconductor, or mesons in the strong interactions. The top quark is very heavy, with a measured mass of approximately 174 GeV, and so its Yukawa coupling is of order unity, suggesting the possibility of strong coupling dynamics at high energy scales. This model attempts to explain how the electroweak scale may match the top quark mass.

<span class="mw-page-title-main">Mathematical formulation of the Standard Model</span> Mathematics of a particle physics model

This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.

In theoretical physics, a scalar–tensor theory is a field theory that includes both a scalar field and a tensor field to represent a certain interaction. For example, the Brans–Dicke theory of gravitation uses both a scalar field and a tensor field to mediate the gravitational interaction.

The Koide formula is an unexplained empirical equation discovered by Yoshio Koide in 1981. In its original form, it is not fully empirical but a set of guesses for a model for masses of quarks and leptons, as well as CKM angles. From this model it survives the observation about the masses of the three charged leptons; later authors have extended the relation to neutrinos, quarks, and other families of particles.

In particle physics, the Peskin–Takeuchi parameters are a set of three measurable quantities, called S, T, and U, that parameterize potential new physics contributions to electroweak radiative corrections. They are named after physicists Michael Peskin and Tatsu Takeuchi, who proposed the parameterization in 1990; proposals from two other groups came almost simultaneously.

In particle physics, composite Higgs models (CHM) are speculative extensions of the Standard Model (SM) where the Higgs boson is a bound state of new strong interactions. These scenarios are models for physics beyond the SM presently tested at the Large Hadron Collider (LHC) in Geneva.

Electric dipole spin resonance (EDSR) is a method to control the magnetic moments inside a material using quantum mechanical effects like the spin–orbit interaction. Mainly, EDSR allows to flip the orientation of the magnetic moments through the use of electromagnetic radiation at resonant frequencies. EDSR was first proposed by Emmanuel Rashba.

References

  1. See renormalization group and references therein.
  2. Politzer, H. David (1973). "Reliable perturbative results for strong interactions?" (PDF). Physical Review Letters . 30 (26): 1346–1349. Bibcode:1973PhRvL..30.1346P. doi: 10.1103/PhysRevLett.30.1346 .
  3. Gross, D.J.; Wilczek, F. (1973). "Asymptotically free gauge theories. 1". Physical Review D. 8 (10): 3633–3652. Bibcode:1973PhRvD...8.3633G. doi: 10.1103/PhysRevD.8.3633 .
  4. Pendleton, B.; Ross, G.G. (1981). "Mass and mixing angle predictions from infrared fixed points". Phys. Lett. B98 (4): 291. Bibcode:1981PhLB...98..291P. doi:10.1016/0370-2693(81)90017-4.
  5. Hill, C.T. (1981). "Quark and lepton masses from renormalization group fixed points". Physical Review . D24 (3): 691. Bibcode:1981PhRvD..24..691H. doi:10.1103/PhysRevD.24.691.
  6. Bardeen, William A.; Hill, Christopher T. & Lindner, Manfred (1990). "Minimal dynamical symmetry breaking of the standard model". Physical Review D. 41 (5): 1647–1660. Bibcode:1990PhRvD..41.1647B. doi:10.1103/PhysRevD.41.1647. PMID   10012522.
  7. Hill, Christopher T.; Machado, Pedro; Thomsen, Anders; Turner, Jessica (2019). "Where are the next Higgs bosons?". Physical Review . D100 (1): 015051. arXiv: 1904.04257 . Bibcode:2019PhRvD.100a5051H. doi:10.1103/PhysRevD.100.015051. S2CID   104291827.
  8. Hill, Christopher T.; Machado, Pedro; Thomsen, Anders; Turner, Jessica (2019). "Scalar democracy". Physical Review . D100 (1): 015015. arXiv: 1902.07214 . Bibcode:2019PhRvD.100a5015H. doi:10.1103/PhysRevD.100.015015. S2CID   119193325.
  9. Banks, Tom; A., Zaks (1982). "On the Phase Structure of Vector-Like Gauge Theories with Massless Fermions". Nucl. Phys. B. 196 (2): 189--204. Bibcode:1982NuPhB.196..189B. doi:10.1016/0550-3213(82)90035-9.