Infrasonic passive differential spectroscopy

Last updated

Infrasonic passive seismic spectroscopy (IPSS) is a passive seismic low frequency technique used for mapping potential oil and gas hydrocarbon accumulations.

Contents

It is part of the geophysical techniques also known under the generic naming passive seismic which includes also passive seismic tomography and micro seismic monitoring for petroleum, gas, and geothermal applications. In a larger scale, passive seismic includes the Global Seismic Network (GSN) earthquake monitoring.

Regarding petroleum and geothermal exploration (within a small scale), the effect of fluid distribution on P-wave propagation in partially saturated rocks is responsible for the low frequency reservoir-related wavefield absorption. [1]

The high level of attenuation within the infrasonic bandwidth (below 10 Hz) of the seismic field observed in natural oil-saturated porous media during the last years (explained by mesoscopic homogeneous models [2] ) is the main responsible of the passive seismic wave field shifting within a low frequency range.

Pressure differences between regions with different fluid/solid properties induce frequency-dependency of the attenuation (Qp and Qs reservoir factors) and velocity dispersion (Vp, Vs) of the low frequency wave field.

Infrasonic passive seismic spectroscopy quantifies the absorption and the wave field dispersion within the low frequency bandwidth giving the most predominant areas linked with possible oil-saturated and porous media.

The low frequency seismic field is not usually reachable by the active seismic surveys being either the explosive waves mainly in the high frequency and the vibroseis currently built not to reach such a low frequencies.

Related Research Articles

Reflection seismology Explore subsurface properties with seismology

Reflection seismology is a method of exploration geophysics that uses the principles of seismology to estimate the properties of the Earth's subsurface from reflected seismic waves. The method requires a controlled seismic source of energy, such as dynamite or Tovex blast, a specialized air gun or a seismic vibrator, commonly known by the trademark name Vibroseis. Reflection seismology is similar to sonar and echolocation. This article is about surface seismic surveys; for vertical seismic profiles, see VSP.

Geologic modelling Applied science of creating computerized representations of portions of the Earths crust

Geologic modelling,geological modelling or geomodelling is the applied science of creating computerized representations of portions of the Earth's crust based on geophysical and geological observations made on and below the Earth surface. A geomodel is the numerical equivalent of a three-dimensional geological map complemented by a description of physical quantities in the domain of interest. Geomodelling is related to the concept of Shared Earth Model; which is a multidisciplinary, interoperable and updatable knowledge base about the subsurface.

Exploration geophysics is an applied branch of geophysics and economic geology, which uses physical methods, such as seismic, gravitational, magnetic, electrical and electromagnetic at the surface of the Earth to measure the physical properties of the subsurface, along with the anomalies in those properties. It is most often used to detect or infer the presence and position of economically useful geological deposits, such as ore minerals; fossil fuels and other hydrocarbons; geothermal reservoirs; and groundwater reservoirs.

Poromechanics is a branch of physics and specifically continuum mechanics and acoustics that studies the behaviour of fluid-saturated porous media. A porous medium or a porous material is a solid permeated by an interconnected network of pores (voids) filled with a fluid. Usually both solid matrix and the pore network are assumed to be continuous, so as to form two interpenetrating continua such as in a sponge. Many natural substances such as rocks, soils, biological tissues, and man made materials such as foams and ceramics can be considered as porous media. Porous media whose solid matrix is elastic and the fluid is viscous are called poroelastic. A poroelastic medium is characterised by its porosity, permeability as well as the properties of its constituents.

Seismic anisotropy is a term used in seismology to describe the directional dependence of the velocity of seismic waves in a medium (rock) within the Earth.

Seismic source device that generates controlled seismic energy used to perform both reflection and refraction seismic surveys

A seismic source is a device that generates controlled seismic energy used to perform both reflection and refraction seismic surveys. A seismic source can be simple, such as dynamite, or it can use more sophisticated technology, such as a specialized air gun. Seismic sources can provide single pulses or continuous sweeps of energy, generating seismic waves, which travel through a medium such as water or layers of rocks. Some of the waves then reflect and refract and are recorded by receivers, such as geophones or hydrophones.

Passive seismic

Passive seismic is the detection of natural low frequency earth movements, usually with the purpose of discerning geological structure and locate underground oil, gas, or other resources. Usually the data listening is done in multiple measurement points that are separated by several hundred meters, over periods of several hours to several days, using portable seismometers. The conclusions about the geological structure are based on the spectral analysis or on the mathematical reconstruction of the propagation and possible sources of the observed seismic waves. If the latter is planned, data are usually acquired in multiple points simultaneously, using so called synchronized lines. Reliability of the time reverse modelling can be further increased using results of reflection seismology about the distribution of the sound speed in the underground volume.

In acoustics, microbaroms, also known as the "voice of the sea", are a class of atmospheric infrasonic waves generated in marine storms by a non-linear interaction of ocean surface waves with the atmosphere. They typically have narrow-band, nearly sinusoidal waveforms with amplitudes up to a few microbars, and wave periods near 5 seconds. Due to low atmospheric absorption at these low frequencies, microbaroms can propagate thousands of kilometers in the atmosphere, and can be readily detected by widely separated instruments on the Earth's surface.

The seismoelectrical method is based on the generation of electromagnetic fields in soils and rocks by seismic waves. This technique is still under development and in the future it may have applications like detecting and characterizing fluids in the underground by their electrical properties, among others, usually related to fluids.

Seismic inversion, in geophysics, is the process of transforming seismic reflection data into a quantitative rock-property description of a reservoir. Seismic inversion may be pre- or post-stack, deterministic, random or geostatistical; it typically includes other reservoir measurements such as well logs and cores.

Heavy oil production is a developing technology for extracting heavy oil in industrial quantities. Estimated reserves of heavy oil are over 6 trillion barrels, three times that of conventional oil and gas.

Michael Schoenberg geophysicist

Michael Schoenberg (1939–2008) was an American theoretical geophysicist noted for his fundamental contributions to the understanding of anisotropy in the real earth and its application to the determination of texture, fracture porosity, and flow properties of reservoir rocks.

Andrew S. Long is an Australian geophysicist. He has a PhD in geophysics (1996) from the University of Western Australia, and a post-doctoral term at Stanford University. He is a leader in the application of geophysical technologies to exploration for oil and gas in marine areas, and has written and presented several papers at the Society of Exploration Geophysicists (SEG), the European Association of Geoscientists and Engineers (EAGE), the Australian Society of Exploration Geophysicists (ASEG), the Australian Petroleum Production & Exploration Association (APPEA) and many other international conventions and journals.

European Association of Geoscientists and Engineers multi-disciplinary professional association

The European Association of Geoscientists and Engineers (EAGE) is a multi-disciplinary professional association for geoscientists and engineers. It was founded in 1951 and has a worldwide membership. The association changed name from European Association of Exploration Geophysicists in 1995. The association is intended for persons that are studying or otherwise professionally involved in geophysics, petroleum exploration, geology, reservoir engineering, mining, and civil engineering. EAGE operates two divisions: the Oil & Gas Geoscience Division and the Near Surface Geoscience Division. The head office of EAGE is located in the Netherlands, with regional offices in Moscow, Dubai, Kuala Lumpur and Bogota.

Geothermal exploration

Geothermal exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering.

In reflection seismology, the anelastic attenuation factor, often expressed as seismic quality factor or Q, quantifies the effects of anelastic attenuation on the seismic wavelet caused by fluid movement and grain boundary friction. As a seismic wave propagates through a medium, the elastic energy associated with the wave is gradually absorbed by the medium, eventually ending up as heat energy. This is known as absorption and will eventually cause the total disappearance of the seismic wave.

Acoustic attenuation is a measure of the energy loss of sound propagation in media. Most media have viscosity, and are therefore not ideal media. When sound propagates in such media, there is always thermal consumption of energy caused by viscosity. For inhomogeneous media, besides media viscosity, acoustic scattering is another main reason for removal of acoustic energy. Acoustic attenuation in a lossy medium plays an important role in many scientific researches and engineering fields, such as medical ultrasonography, vibration and noise reduction.

Mathematical Q models provide a model of the earth's response to seismic waves. In reflection seismology, the anelastic attenuation factor, often expressed as seismic quality factor or Q, which is inversely proportional to attenuation factor, quantifies the effects of anelastic attenuation on the seismic wavelet caused by fluid movement and grain boundary friction. When a plane wave propagates through a homogeneous viscoelastic medium, the effects of amplitude attenuation and velocity dispersion may be combined conveniently into the single dimensionless parameter, Q. As a seismic wave propagates through a medium, the elastic energy associated with the wave is gradually absorbed by the medium, eventually ending up as heat energy. This is known as absorption and will eventually cause the total disappearance of the seismic wave.

Jerry M. Harris is an American geophysicist and the Cecil and Ida Green Professor of Geophysics at Stanford University. Harris established the Stanford Wave Physics Lab, which investigate the physics of seismic and electromagnetic waves in complex media. He was co-founder of the Stanford Global Climate and Energy Project and the Center for Computational Earth and Environmental Science.

References

  1. "Publications".
  2. S. A. Shapiro (23 April 2015). Fluid-Induced Seismicity. ISBN   9780521884570.

Further reading

Quintal B.,. Frequency-dependent attenuation as a potential indicator of oil saturation Journal of Applied Geophysics 82, pp. 119–128, 2012. Lambert M.-A., Saenger E.H., Quintal B., Schmalholz S.M.,. Numerical simulation of ambient seismic wavefield modification caused by pore-fluid effects in an oil reservoir Geophysics 78, pp. T41-T52, 2013.

Artman, B., I. Podladtchikov, and B. Witten, 2010, Source location using time-reverse imaging. Geophysical Prospecting, 58, 861–873.

Biot M. A. 1956a,. Theory of propagation of elastic waves in a fluid-saturated porous solid: Part1—Low-frequency range Journal of the Acoustical Society of America, 28, 168–178.

Biot M.A. 1956b,. Theory of propagation of elastic waves in a fluid-saturated porous solid: Part2—Higher frequency range Journal of the Acoustical Society ofAmerica, 28, 179–191.

Biot M.A. 1962. Mechanics of deformation and acoustic propagation in porous media Journal of Applied Physics 33, 1482–1498.

Carcione, J. M., H. B. Helle, and N. H. Pham (2003),: White’s model for wave propagation in partially saturated rocks Comparison with poroelastic numerical experiments. Geophysics, 68, 1389– 1398.

Dutta, N. C., and H. Ode, 1979a,: Attenuation and dispersion of compressional-waves in fluid-filled rocks with partial gas saturation White model: Part 1—Biot theory Geophysics, 44, 1777–1788.

Pride S.R. and Berryman J.G. 2003. Linear dynamics of double porosity and dual-permeability materials. I. Governing equations and acoustic attenuation Physical Review E 68, 036604.

Rubino, J. G., C. L. Ravazzoli, and J. E. Santos, 2009,: Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks Geophysics, 74, no. 1, N1–N13.

Riahi, N., B. Birkelo, and E. H. Saenger, 2011,: A statistical strategy to analyzing passive seismic attributes 73rd Annual Conference and Exhibition, EAGE, Extended Abstracts, P198.

Akrawi, K., Campagna, F., Russo, L., Yousif, M. E., Abdelhafeez, M. H.,: Passive seismic survey results identified potential prospects in Sudan Abstract: 10th Middle East Geosciences Conference and Exhibition, EAGE, Article: #90141©2012 GEO-2012,

Artman, B., M. Duclos, B. Birkelo, F. Huguet, J. F. Dutzer, and R. Habiger, 2011, Low-frequency seismic survey at a gas storage reservoir: 73rd Annual Conference and Exhibition, EAGE, Extended Abstracts, P331.

Lambert, M.-A., S. M. Schmalholz, E. H. Saenger, and B. Steiner, 2009,: Low-frequency microtremor anomalies at an oil and gas field in Voitsdorf, AustriaGeophysical Prospecting, 57, 393–411.

Steiner, B., E. H. Saenger, and S. M. Schmalholz, 2008,: Time reverse modeling of low-frequency microtremors Application to hydrocarbon reservoir localization: Geophysical Research Letters, 35, L03307.

Toms, J., 2008. Effect of Fluid Distribution on Compressional Wave Propagation in Partially Saturated Rocks. PhD Thesis.

White J.E., Mikhaylova N.G. and Lyakhovitskiy F.M. 1976. Low frequency seismic waves in fluid-saturated layered rocks Izvestija Academy of Sciences USSR, Physics Solid Earth 11, 654–659.