Inhour equation

Last updated

The Inhour equation used in nuclear reactor kinetics to relate reactivity and the reactor period. [1] Inhour is short for "inverse hour" and is defined as the reactivity which will make the stable reactor period equal to 1 hour (3,600 seconds). [2] Reactivity is more commonly expressed as per cent millie (pcm) of Δk/k or dollars. [3]

The Inhour equation is obtained by dividing the reactivity equation, Equation 1, by the corresponding value of the inhour unit, shown by Equation 2. [2]

[Equation 1]

[Equation 2]

       ρ = reactivity
       l*= neutron generation time
       Tp= reactor period
       βi= fraction of delayed neutrons of ith kind
       λi= precursor decay constant of ith kind

For small reactivity or large reactor periods, unity may be neglected in comparison with λiTp and λi3600 and the Inhour equation can be simplified to Equation 3. [2]

[Equation 3]

The inhour equation is initially derived from the point kinetics equations. The point reactor kinetics model assumes that the spatial flux shape does not change with time. This removes spatial dependencies and looks at only changes with times in the neutron population. [3] The point kinetics equation for neutron population is shown in Equation 4.

[Equation 4]

where k = multiplication factor (neutrons created/neutrons destroyed)

The delayed neutrons (produced from fission products in the reactor) contribute to reactor time behavior and reactivity. [4] The prompt neutron lifetime in a modern thermal reactor is about 10−4 seconds, thus it is not feasible to control reactor behavior with prompt neutrons alone. Reactor time behavior can be characterized by weighing the prompt and delayed neutron yield fractions to obtain the average neutron lifetime, Λ=l/k, or the mean generation time between the birth of a neutron and the subsequent absorption inducing fission. [5] Reactivity, ρ, is the change in k effective or (k-1)/k. [3]

For one effective delayed group with an average decay constant, C, the point kinetics equation can be simplified to Equation 5 and Equation 6 [1] [3] with general solutions Equation 7 and 8, respectively.

[Equation 5]

[Equation 6]

General Solutions

[Equation 7]

[Equation 8]

where

The time constant expressing the more slowly varying asymptotic behavior is referred to as the stable reactor period. [3]

Related Research Articles

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

In physics, a partition function describes the statistical properties of a system in thermodynamic equilibrium. Partition functions are functions of the thermodynamic state variables, such as the temperature and volume. Most of the aggregate thermodynamic variables of the system, such as the total energy, free energy, entropy, and pressure, can be expressed in terms of the partition function or its derivatives. The partition function is dimensionless.

In the general theory of relativity, the Einstein field equations relate the geometry of spacetime to the distribution of matter within it.

<span class="mw-page-title-main">Onsager reciprocal relations</span> Relations between flows and forces, or gradients, in thermodynamic systems

In thermodynamics, the Onsager reciprocal relations express the equality of certain ratios between flows and forces in thermodynamic systems out of equilibrium, but where a notion of local equilibrium exists.

In differential geometry, the Cotton tensor on a (pseudo)-Riemannian manifold of dimension n is a third-order tensor concomitant of the metric. The vanishing of the Cotton tensor for n = 3 is necessary and sufficient condition for the manifold to be conformally flat. By contrast, in dimensions n ≥ 4, the vanishing of the Cotton tensor is necessary but not sufficient for the metric to be conformally flat; instead, the corresponding necessary and sufficient condition in these higher dimensions is the vanishing of the Weyl tensor, while the Cotton tensor just becomes a constant times the divergence of the Weyl tensor. For n < 3 the Cotton tensor is identically zero. The concept is named after Émile Cotton.

<span class="mw-page-title-main">Friedmann equations</span> Equations in physical cosmology

The Friedmann equations are a set of equations in physical cosmology that govern the expansion of space in homogeneous and isotropic models of the universe within the context of general relativity. They were first derived by Alexander Friedmann in 1922 from Einstein's field equations of gravitation for the Friedmann–Lemaître–Robertson–Walker metric and a perfect fluid with a given mass density ρ and pressure p. The equations for negative spatial curvature were given by Friedmann in 1924.

<span class="mw-page-title-main">Radiation zone</span>

A radiation zone, or radiative region is a layer of a star's interior where energy is primarily transported toward the exterior by means of radiative diffusion and thermal conduction, rather than by convection. Energy travels through the radiation zone in the form of electromagnetic radiation as photons.

The principle of detailed balance can be used in kinetic systems which are decomposed into elementary processes. It states that at equilibrium, each elementary process is in equilibrium with its reverse process.

<span class="mw-page-title-main">Nuclear reactor physics</span> Field of physics dealing with nuclear reactors

Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a controlled rate of fission in a nuclear reactor for the production of energy. Most nuclear reactors use a chain reaction to induce a controlled rate of nuclear fission in fissile material, releasing both energy and free neutrons. A reactor consists of an assembly of nuclear fuel, usually surrounded by a neutron moderator such as regular water, heavy water, graphite, or zirconium hydride, and fitted with mechanisms such as control rods which control the rate of the reaction.

A quasiprobability distribution is a mathematical object similar to a probability distribution but which relaxes some of Kolmogorov's axioms of probability theory. Quasiprobabilities share several of general features with ordinary probabilities, such as, crucially, the ability to yield expectation values with respect to the weights of the distribution. However, they can violate the σ-additivity axiom: integrating over them does not necessarily yield probabilities of mutually exclusive states. Indeed, quasiprobability distributions also have regions of negative probability density, counterintuitively, contradicting the first axiom. Quasiprobability distributions arise naturally in the study of quantum mechanics when treated in phase space formulation, commonly used in quantum optics, time-frequency analysis, and elsewhere.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

In the theory of general relativity, a stress–energy–momentum pseudotensor, such as the Landau–Lifshitz pseudotensor, is an extension of the non-gravitational stress–energy tensor that incorporates the energy–momentum of gravity. It allows the energy–momentum of a system of gravitating matter to be defined. In particular it allows the total of matter plus the gravitating energy–momentum to form a conserved current within the framework of general relativity, so that the total energy–momentum crossing the hypersurface of any compact space–time hypervolume vanishes.

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members often asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients and ultimately allowing the out-of-sample prediction of the regressandconditional on observed values of the regressors. The simplest and most widely used version of this model is the normal linear model, in which given is distributed Gaussian. In this model, and under a particular choice of prior probabilities for the parameters—so-called conjugate priors—the posterior can be found analytically. With more arbitrarily chosen priors, the posteriors generally have to be approximated.

In astrophysics, the Tolman–Oppenheimer–Volkoff (TOV) equation constrains the structure of a spherically symmetric body of isotropic material which is in static gravitational equilibrium, as modelled by general relativity. The equation is

A ratio distribution is a probability distribution constructed as the distribution of the ratio of random variables having two other known distributions. Given two random variables X and Y, the distribution of the random variable Z that is formed as the ratio Z = X/Y is a ratio distribution.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In queueing theory, a discipline within the mathematical theory of probability, the M/M/c queue is a multi-server queueing model. In Kendall's notation it describes a system where arrivals form a single queue and are governed by a Poisson process, there are c servers, and job service times are exponentially distributed. It is a generalisation of the M/M/1 queue which considers only a single server. The model with infinitely many servers is the M/M/∞ queue.

Riemann invariants are mathematical transformations made on a system of conservation equations to make them more easily solvable. Riemann invariants are constant along the characteristic curves of the partial differential equations where they obtain the name invariant. They were first obtained by Bernhard Riemann in his work on plane waves in gas dynamics.

In general relativity, light is assumed to propagate in a vacuum along a null geodesic in a pseudo-Riemannian manifold. Besides the geodesics principle in a classical field theory there exists Fermat's principle for stationary gravity fields.

References

  1. 1 2 "Inhour Equation - Reactor Kinetics". www.nuclear-power.net. Retrieved 2017-12-09.
  2. 1 2 3 Glasstone, Samuel (1967). Nuclear reactor engineering. Sesonske, Alexander, 1921-. Princeton, N.J: Van Nostrand. ISBN   9780442027254. OCLC   1173592.
  3. 1 2 3 4 5 Duderstadt, James J. (16 January 1976). Nuclear reactor analysis. Hamilton, Louis J., 1941-. New York: Wiley. ISBN   9780471223634. OCLC   1529401.
  4. R., Lamarsh, John (2001). Introduction to nuclear engineering. Baratta, Anthony John, 1945- (3rd ed.). Upper Saddle River, N.J.: Prentice Hall. ISBN   9780201824988. OCLC   46708742.
  5. George, Bell (1970). Nuclear Reactor Theory. New York, NY: Litton Educational Publishing, INC. ISBN   978-0442027155.