Injection molding of liquid silicone rubber

Last updated

Injection molding of liquid silicone rubber (LSR) is a process to produce pliable, durable parts in high volume.

Contents

Liquid silicone rubber is a high purity platinum cured silicone with low compression set, good stability and ability to resist extreme temperatures of heat and cold ideally suitable for production of parts, where high quality is required. [1] [ third-party source needed ] Due to the thermosetting nature of the material, liquid silicone injection molding requires special treatment, such as intensive distributive mixing, while maintaining the material at a low temperature before it is pushed into the heated cavity and vulcanized.

Chemically, silicone rubber is a family of thermoset elastomers that have a backbone of alternating silicon and oxygen atoms and methyl or vinyl side groups. Silicone rubbers constitute about 30% of the silicone family, making them the largest group of that family. Silicone rubbers maintain their mechanical properties over a wide range of temperatures and the presence of methyl-groups in silicone rubbers makes these materials extremely hydrophobic, making them suitable for electrical surface insulations. [2]

Typical applications for liquid silicone rubber are products that require high precision such as seals, sealing membranes, electric connectors, multi-pin connectors, infant products where smooth surfaces are desired, such as bottle nipples, medical applications as well as kitchen goods such as baking pans, spatulas, etc. Often, silicone rubber is overmolded onto other parts made of different plastics. For example, a silicone button face might be overmolded onto a Nylon 6,6 housing.

Equipment

In order for the liquid injection molding process to fully occur, several mechanical components must be in place. Typically, a molding machine requires a metered pumping device in conjunction with an injection unit—a dynamic or static mixer is attached. An integrated system can aid in precision and process efficiency. The critical components of a liquid injection molding machine include: [3]

Injectors. An injecting device is responsible for pressurizing the liquid silicone to aid in the injection of the material into the pumping section of the machine. Pressure and injection rate can be adjusted at the operator's discretion.

Metering Units. Metering units pump the two primary liquid materials, the catalyst and the base forming silicone, ensuring that the two materials maintain a constant ratio while being simultaneously released.

Supply Drums. Supply drums, also called plungers, serve as the primary containers for mixing materials. Both the supply drums and a container of pigment connect to the main pumping system.

Mixers. A static or dynamic mixer combines materials after they exit the metering units. Once combined, pressure is used to drive the mixture into a designated mold.

Nozzle. To facilitate the deposition of the mixture into the mold, a nozzle is used. Often, the nozzle features an automatic shut-off valve to help prevent leaking and overfilling the mold.

Mold Clamp. A mold clamp secures the mold during the injection molding process, and opens the mold upon completion.

Characteristics of LSR

Biocompatibility: Under extensive testing, liquid silicone rubber has demonstrated superior compatibility with human tissue and body fluids. In comparison to other elastomers, LSR is resistant to bacteria growth and will not stain or corrode other materials. LSR is also tasteless and odorless and can be formulated to comply with stringent FDA requirements. The material can be sterilized via a variety of methods, including steam autoclaving, ethylene oxide (ETO), gamma, e-beam and numerous other techniques, meeting all required approvals such as BfR XV, FDA 21 CFR 177.2600, USP Class VI. [4]

Durable: LSR parts can withstand extreme temperatures, which makes them an ideal choice for components under the hood of cars and in close proximity to engines. Parts fabricated via liquid silicone rubber injection molding are fire retardant and will not melt.

Chemical resistance: Liquid silicone rubber resists water, oxidation and some chemical solutions such as acids and alkali.

Temperature resistance: Compared to other elastomers, silicone can withstand a wide range of high/low temperature extremes.

Mechanical properties: LSR has good elongation, high tear and tensile strength, excellent flexibility and a hardness range of 5 to 80 Shore A.

Electrical properties: LSR has excellent insulating properties, which offer an appealing option for a host of electrical applications. Compared to conventional insulating material, silicone can perform in far higher and lower temperatures.

Transparency and pigmentation: LSR possesses a natural transparency. This attribute makes it possible to produce colorful, custom, molded products [5]

Injection molding process

Liquid silicone rubbers are supplied in barrels. Because of their low viscosity, these rubbers can be pumped through pipelines and tubes to the vulcanization equipment. The two components are pumped through a static mixer by a metering pump. One of the components contains the catalyst, typically platinum based. A coloring paste as well as other additives can also be added before the material enters the static mixer section. In the static mixer the components are well mixed and are transferred to the cooled metering section of the injection molding machine. The static mixer renders a very homogeneous material that results in products that are not only very consistent throughout the part, but also from part to part. This is in contrast to solid silicone rubber materials that are purchased pre-mixed and partially vulcanized. In contrast, hard silicone rubbers are processed by transfer molding and result in less material consistency and control, leading to higher part variability. Additionally, solid silicone rubber materials are processed at higher temperatures and require longer vulcanization times.

Liquid silicone has a very low viscosity index and requires perfect seals of the mould cavity in order to guarantee a burr-free finished product. As injections are carried out at high temperature, steel dilation and natural shrinkage of materials must be considered at the design stage of the LSR injection tooling. [6]

From the metering section of the injection molding machine, the compound is pushed through cooled sprue and runner systems into a heated cavity where the vulcanization takes place. The cold runner and general cooling results in no loss of material in the feed lines. The cooling allows production of LSR parts with nearly zero material waste, eliminating trimming operations and yielding significant savings in material cost.

Liquid silicone rubbers are supplied in a variety of containers, from tubes to 55 gallon drums. Because of their viscous nature, these liquids are pumped at high pressures (500 - 5000 psi) based on the durometer of the material. The raw materials are shipped in two separate containers (known in the industry as a kit) identified as "A" and B" compounds, with the "B" side usually containing the catalyst, but may vary based on the brand of silicone used. The two (A and B) compounds must be mixed in a 1 to 1 ratio, usually by way of a static mixer, adding pigment during the mixing process before the curing process begins. [7] Once the two components come together the curing process begins immediately. A chiller supplying cold water to jacketed fittings is typically used to retard the curing process prior to the materials introduction to the mold. A color pigment can be added via a color injector used in conjunction with the material pump (closed loop metering system) before the material enters the static mixer section.

In a cold deck scenario, the 1 to 1 mixed compound is pumped through cooled sprue and runner systems into a heated cavity where the vulcanization takes place. The cold runner and general cooling results in minimal loss of material as the injection occurs directly into the part or cavity, saving on overall material costs and using high consistency rubber. [8] The cooling allows production of LSR parts with nearly zero material valve gate waste, however this does not guarantee a "flash free" finished part. Molds and tooling are varying in design, execution and cost. A good cold runner is expensive as compared to conventional hot runner tooling, and has the potential to provide a high level of performance.

Advantages of liquid silicone injection molding

Source: [9]

Related Research Articles

<span class="mw-page-title-main">Polyurethane</span> Polymer composed of a chain of organic units joined by carbamate (urethane) links

Polyurethane refers to a class of polymers composed of organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane is produced from a wide range of starting materials. This chemical variety produces polyurethanes with different chemical structures leading to many different applications. These include rigid and flexible foams, and coatings, adhesives, electrical potting compounds, and fibers such as spandex and polyurethane laminate (PUL). Foams are the largest application accounting for 67% of all polyurethane produced in 2016.

<span class="mw-page-title-main">Metal casting</span> Pouring liquid metal into a mold

In metalworking and jewelry making, casting is a process in which a liquid metal is delivered into a mold that contains a negative impression of the intended shape. The metal is poured into the mold through a hollow channel called a sprue. The metal and mold are then cooled, and the metal part is extracted. Casting is most often used for making complex shapes that would be difficult or uneconomical to make by other methods.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Injection moulding</span> Manufacturing process for producing parts by injecting molten material into a mould, or mold

Injection moulding is a manufacturing process for producing parts by injecting molten material into a mould, or mold. Injection moulding can be performed with a host of materials mainly including metals, glasses, elastomers, confections, and most commonly thermoplastic and thermosetting polymers. Material for the part is fed into a heated barrel, mixed, and injected into a mould cavity, where it cools and hardens to the configuration of the cavity. After a product is designed, usually by an industrial designer or an engineer, moulds are made by a mould-maker from metal, usually either steel or aluminium, and precision-machined to form the features of the desired part. Injection moulding is widely used for manufacturing a variety of parts, from the smallest components to entire body panels of cars. Advances in 3D printing technology, using photopolymers that do not melt during the injection moulding of some lower-temperature thermoplastics, can be used for some simple injection moulds.

<span class="mw-page-title-main">O-ring</span> Mechanical, toroid gasket that seals an interface

An O-ring, also known as a packing or a toric joint, is a mechanical gasket in the shape of a torus; it is a loop of elastomer with a round cross-section, designed to be seated in a groove and compressed during assembly between two or more parts, forming a seal at the interface.

<span class="mw-page-title-main">Compression molding</span> Method of molding

Compression molding is a method of molding in which the molding material, generally preheated, is first placed in an open, heated mold cavity. The mold is closed with a top force or plug member, pressure is applied to force the material into contact with all mold areas, while heat and pressure are maintained until the molding material has cured; this process is known as compression molding method and in case of rubber it is also known as 'Vulcanisation'. The process employs thermosetting resins in a partially cured stage, either in the form of granules, putty-like masses, or preforms.

<span class="mw-page-title-main">Rotational molding</span> Making hollow plastic objects in a heated mold

Rotational molding involves a heated mold which is filled with a charge or shot weight of the material. It is then slowly rotated, causing the softened material to disperse and stick to the walls of the mold forming a hollow part. In order to form an even thickness throughout the part, the mold rotates at all times during the heating phase, and then continues to rotate during the cooling phase to avoid sagging or deformation. The process was applied to plastics in the 1950s but in the early years was little used because it was a slow process restricted to a small number of plastics. Over time, improvements in process control and developments with plastic powders have resulted in increased use.

Spin casting, also known as centrifugal rubber mold casting (CRMC), is a method of utilizing inertia to produce castings from a rubber mold. Typically, a disc-shaped mold is spun along its central axis at a set speed. The casting material, usually molten metal or liquid thermoset plastic, is then poured in through an opening at the top-center of the mold. The filled mold then continues to spin as the metal solidifies.

<span class="mw-page-title-main">Silicone rubber</span> Elastomer composed of silicone

Silicone rubber is an elastomer composed of silicone—itself a polymer—containing silicon together with carbon, hydrogen, and oxygen. Silicone rubbers are widely used in industry, and there are multiple formulations. Silicone rubbers are often one- or two-part polymers, and may contain fillers to improve properties or reduce cost. Silicone rubber is generally non-reactive, stable, and resistant to extreme environments and temperatures from −55 to 300 °C while still maintaining its useful properties. Due to these properties and its ease of manufacturing and shaping, silicone rubber can be found in a wide variety of products, including voltage line insulators; automotive applications; cooking, baking, and food storage products; apparel such as undergarments, sportswear, and footwear; electronics; medical devices and implants; and in home repair and hardware, in products such as silicone sealants.

<span class="mw-page-title-main">Tire manufacturing</span> Process of tire fabrication

Pneumatic tires are manufactured according to relatively standardized processes and machinery, in around 455 tire factories in the world. With over 1 billion tires manufactured worldwide annually, the tire industry is a major consumer of natural rubber. Tire factories start with bulk raw materials such as synthetic rubber, carbon black, and chemicals and produce numerous specialized components that are assembled and cured.

<span class="mw-page-title-main">Hot runner</span>

A hot runner system is an assembly of heated components used in plastic injection molds that inject molten plastic into the cavities of the mold.

Fusible core injection molding, also known as lost core injection molding, is a specialized plastic injection molding process used to mold internal cavities or undercuts that are not possible to mold with demoldable cores. Strictly speaking the term "fusible core injection molding" refers to the use of a fusible alloy as the core material; when the core material is made from a soluble plastic the process is known as soluble core injection molding. This process is often used for automotive parts, such as intake manifolds and brake housings, however it is also used for aerospace parts, plumbing parts, bicycle wheels, and footwear.

Rubber Technology is the subject dealing with the transformation of rubbers or elastomers into useful products, such as automobile tires, rubber mats and, exercise rubber stretching bands. The materials includes latex, natural rubber, synthetic rubber and other polymeric materials, such as thermoplastic elastomers. Rubber processed through such methods are components of a wide range of items.

Reaction injection molding (RIM) is similar to injection molding except thermosetting polymers are used, which requires a curing reaction to occur within the mold.

Thermoplastic vulcanizates (TPV) are dynamically vulcanized alloys consisting mostly of fully cured EPDM rubber particles encapsulated in a polypropylene (PP) matrix. They are part of the thermoplastic elastomer (TPE) family of polymers but are closest in elastomeric properties to EPDM thermoset rubber, combining the characteristics of vulcanized rubber with the processing properties of thermoplastics. There are almost 100 grades in the S portfolio that are used globally in the automotive, household appliance, electrical, construction, and healthcare markets. The name Santoprene was trademarked in 1977 by Monsanto, and the trademark is now owned by Celanese. Similar material is available from Elastron and others.

A resin dispensing system is a technical installation to process casting resin for the purpose of filling, sealing, covering or soaking technical parts, especially in the field of electricity and electronics like transformers, LCDs and other devices of various size.

Resin casting is a method of plastic casting where a mold is filled with a liquid synthetic resin, which then hardens. It is primarily used for small-scale production like industrial prototypes and dentistry. It can be done by amateur hobbyists with little initial investment, and is used in the production of collectible toys, models and figures, as well as small-scale jewellery production.

Low pressure molding (LPM) with polyamide and polyolefin (hot-melt) materials is a process typically used to encapsulate and environmentally protect electronic components. The purpose is to protect electronics against moisture, dust dirt and vibration. Low pressure molding is also used for sealing connectors and molding grommets and strain reliefs.

Cast urethanes are similar to injection molding. During the process of injection molding, a hard tool is created. The hard tool, made of an A side and a B side, forms a void within and that void is injected with plastics ranging in material property, durability, and consistency. Plastic cups, dishware, and toys are most commonly made using the process of injection molding because they are common consumer items that need to be produced on a mass scale, and injection molding is designed for mass production.

Multi-material injection molding (MMM) is the process of molding two or more different materials into one plastic part at one time. As is the case in traditional injection molding, multi material injection molding uses materials that are at or near their melting point so that the semi-liquidous (viscous) material can fill voids and cavities within a pre-machined mold, thus taking on the desired shape of designed tooling. In general, advantages of MMM over other production techniques include, but are not limited to, creating parts that have an elastic modulus that varies with location on the part, creating a single-structure part with different regional materials, and also creating a single part with multiple independent polymer colors. Applications range from simple household items like a toothbrush to more heavy duty construction of items like power tools.

References

  1. "LSR Injection Molding vs. HCR Injection Molding" . Retrieved June 28, 2019.
  2. "Silicone in Medium-to-High Voltage Electrical Applications". AZoM.com. September 7, 2012. Retrieved January 23, 2018.
  3. Liquid Injection Molding
  4. LSR specific properties. "LSR specific properties". Archived from the original on March 14, 2016.
  5. "Liquid Silicone Rubber (LSR) Parts Injection Molding | SIMTEC".
  6. "LSR Mold technology". Archived from the original on May 29, 2016. Retrieved March 14, 2016.
  7. "Liquid Silicone Rubber — Injection Molding Guide" (PDF). Bluestar Silicones.
  8. "Liquid Injection Molding". Elastomer Technologies. Retrieved January 23, 2018.
  9. "Advantages of Liquid silicone injection molding". Archived from the original on April 2, 2016.

Further reading