Inman Harvey

Last updated

Inman Harvey is a former senior lecturer in computer science and artificial intelligence at the University of Sussex; he is now a visiting senior research fellow at the same university. [1] His research interests largely centre on the development of artificial evolution as an approach to the design of complex systems. Application domains of interest include evolutionary robotics, evolvable hardware, molecules for pharmaceutical purposes.

Contents

Together with other Sussex faculty, mainly from the School of Cognitive and Computer Sciences (COGS), he developed the MSc programme on Evolutionary and Adaptive Systems (EASy), which was active in the 1990s and 2000s, attracting dozens of students that have contributed to artificial life, evolutionary robotics, cognitive science and other disciplines.

Harvey's other interests include philosophical approaches to AI and artificial life (a non-representational, dynamical systems approach); passive dynamic walking; and Gaia theory. He originally started as a mathematician and philosopher at the University of Cambridge.

The article "Evolving a Conscious Machine" in the June 1998 issue of the magazine Discover (pp. 72–79) overviews Harvey's and Adrian Thompson's work with evolving an FPGA program to recognize tones. See: [2]

Selected publications

Harvey's highest-cited papers indexed at Google Scholar are: [3]

Related Research Articles

<span class="mw-page-title-main">Evolutionary computation</span> Trial and error problem solvers with a metaheuristic or stochastic optimization character

In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.

Evolvable hardware (EH) is a field focusing on the use of evolutionary algorithms (EA) to create specialized electronics without manual engineering. It brings together reconfigurable hardware, evolutionary computation, fault tolerance and autonomous systems. Evolvable hardware refers to hardware that can change its architecture and behavior dynamically and autonomously by interacting with its environment.

<span class="mw-page-title-main">Terrence Deacon</span> American linguist

Terrence William Deacon is an American neuroanthropologist. He taught at Harvard for eight years, relocated to Boston University in 1992, and is currently Professor of Anthropology and member of the Cognitive Science Faculty at the University of California, Berkeley.

<span class="mw-page-title-main">Dynamical systems theory</span> Area of mathematics used to describe the behavior of complex dynamical systems

Dynamical systems theory is an area of mathematics used to describe the behavior of complex dynamical systems, usually by employing differential equations or difference equations. When differential equations are employed, the theory is called continuous dynamical systems. From a physical point of view, continuous dynamical systems is a generalization of classical mechanics, a generalization where the equations of motion are postulated directly and are not constrained to be Euler–Lagrange equations of a least action principle. When difference equations are employed, the theory is called discrete dynamical systems. When the time variable runs over a set that is discrete over some intervals and continuous over other intervals or is any arbitrary time-set such as a Cantor set, one gets dynamic equations on time scales. Some situations may also be modeled by mixed operators, such as differential-difference equations.

Evolutionary robotics is an embodied approach to Artificial Intelligence (AI) in which robots are automatically designed using Darwinian principles of natural selection. The design of a robot, or a subsystem of a robot such as a neural controller, is optimized against a behavioral goal. Usually, designs are evaluated in simulations as fabricating thousands or millions of designs and testing them in the real world is prohibitively expensive in terms of time, money, and safety.

Developmental robotics (DevRob), sometimes called epigenetic robotics, is a scientific field which aims at studying the developmental mechanisms, architectures and constraints that allow lifelong and open-ended learning of new skills and new knowledge in embodied machines. As in human children, learning is expected to be cumulative and of progressively increasing complexity, and to result from self-exploration of the world in combination with social interaction. The typical methodological approach consists in starting from theories of human and animal development elaborated in fields such as developmental psychology, neuroscience, developmental and evolutionary biology, and linguistics, then to formalize and implement them in robots, sometimes exploring extensions or variants of them. The experimentation of those models in robots allows researchers to confront them with reality, and as a consequence, developmental robotics also provides feedback and novel hypotheses on theories of human and animal development.

<span class="mw-page-title-main">Francis Heylighen</span> Belgian cyberneticist (born 1960)

Francis Paul Heylighen is a Belgian cyberneticist investigating the emergence and evolution of intelligent organization. He presently works as a research professor at the Vrije Universiteit Brussel, where he directs the transdisciplinary "Center Leo Apostel" and the research group on "Evolution, Complexity and Cognition". He is best known for his work on the Principia Cybernetica Project, his model of the Internet as a global brain, and his contributions to the theories of memetics and self-organization. He is also known, albeit to a lesser extent, for his work on gifted people and their problems.

Phil Husbands is a professor of computer science and artificial intelligence at the English University of Sussex, situated next to the East Sussex village of Falmer, within the city of Brighton and Hove. He is head of the Evolutionary and Adaptive Systems group and co-director of the Centre for Computational Neuroscience and Robotics (CCNR). Husbands is also one of the founders of the field of evolutionary robotics.

Stefano Nolfi is a director of research of the Institute of Cognitive Sciences and Technologies at the Consiglio Nazionale delle Ricerche and head of the Laboratory of Autonomous Robots and Artificial Life. He is one of the founders of Evolutionary robotics. Nolfi's research interests include: evolution of communication and language, language and action, adaptive behavior, swarm robotics.

The following outline is provided as an overview of and topical guide to artificial intelligence:

Artificial development, also known as artificial embryogeny or machine intelligence or computational development, is an area of computer science and engineering concerned with computational models motivated by genotype–phenotype mappings in biological systems. Artificial development is often considered a sub-field of evolutionary computation, although the principles of artificial development have also been used within stand-alone computational models.

Artificial languages are languages of a typically very limited size which emerge either in computer simulations between artificial agents, robot interactions or controlled psychological experiments with humans. They are different from both constructed languages and formal languages in that they have not been consciously devised by an individual or group but are the result of (distributed) conventionalisation processes, much like natural languages. Opposed to the idea of a central designer, the field of artificial language evolution in which artificial languages are studied can be regarded as a sub-part of the more general cultural evolution studies.

Universal Darwinism, also known as generalized Darwinism, universal selection theory, or Darwinian metaphysics, is a variety of approaches that extend the theory of Darwinism beyond its original domain of biological evolution on Earth. Universal Darwinism aims to formulate a generalized version of the mechanisms of variation, selection and heredity proposed by Charles Darwin, so that they can apply to explain evolution in a wide variety of other domains, including psychology, linguistics, economics, culture, medicine, computer science, and physics.

Morphogenetic robotics generally refers to the methodologies that address challenges in robotics inspired by biological morphogenesis.

<span class="mw-page-title-main">Dave Cliff (computer scientist)</span>

David T. Cliff is a Professor in the Department of Computer Science at the University of Bristol and was formerly the Director of the UK Large-scale Complex IT Systems (LSCITS) Initiative. Cliff is the inventor of the seminal "ZIP" trading algorithm, one of the first of the current generation of autonomous adaptive algorithmic trading systems, which was demonstrated to outperform human traders in research published in 2001 by IBM. He is also the inventor on multiple international patents from the early 2000s concerning his invention hpDJ, the world's first fully automated disk-jockey (DJ) system for electronic dance music, the precursor to present-day DJ automation tools such as Traktor.

<span class="mw-page-title-main">Artificial life</span> Field of study

Artificial life is a field of study wherein researchers examine systems related to natural life, its processes, and its evolution, through the use of simulations with computer models, robotics, and biochemistry. The discipline was named by Christopher Langton, an American computer scientist, in 1986. In 1987, Langton organized the first conference on the field, in Los Alamos, New Mexico. There are three main kinds of alife, named for their approaches: soft, from software; hard, from hardware; and wet, from biochemistry. Artificial life researchers study traditional biology by trying to recreate aspects of biological phenomena.

Ezequiel A Di Paolo is a full-time Research Professor at Ikerbasque, the Basque Foundation for Science. He also has affiliations with the Centre for Computational Neuroscience and Robotics at the University of Sussex. His field of research covers enactivism and embodiment in cognitive science.

Cognitive biology is an emerging science that regards natural cognition as a biological function. It is based on the theoretical assumption that every organism—whether a single cell or multicellular—is continually engaged in systematic acts of cognition coupled with intentional behaviors, i.e., a sensory-motor coupling. That is to say, if an organism can sense stimuli in its environment and respond accordingly, it is cognitive. Any explanation of how natural cognition may manifest in an organism is constrained by the biological conditions in which its genes survive from one generation to the next. And since by Darwinian theory the species of every organism is evolving from a common root, three further elements of cognitive biology are required: (i) the study of cognition in one species of organism is useful, through contrast and comparison, to the study of another species' cognitive abilities; (ii) it is useful to proceed from organisms with simpler to those with more complex cognitive systems, and (iii) the greater the number and variety of species studied in this regard, the more we understand the nature of cognition.

<span class="mw-page-title-main">Luis M. Rocha</span> American computer scientist

Luis M. Rocha is the George J. Klir Professor of Systems Science at the Thomas J. Watson College of Engineering and Applied Science, Binghamton University. He has been director of the NSF-NRT Complex Networks and Systems graduate Program in Informatics at Indiana University, Bloomington, USA. He is also director of the Center for Social and Biomedical Complexity, between Binghamton University and Indiana University, Bloomington, a Fulbright Scholar, and Principal Investigator at the Instituto Gulbenkian de Ciência, Portugal. His research is on complex systems and networks, computational and systems biology, biomedical complexity and digital health, and computational intelligence.

<span class="mw-page-title-main">Emma Hart (computer scientist)</span> English computer scientist

Professor Emma Hart, FRSE is an English computer scientist known for her work in artificial immune systems (AIS), evolutionary computation and optimisation. She is a professor of computational intelligence at Edinburgh Napier University, editor-in-chief of the Journal of Evolutionary Computation, and D. Coordinator of the Future & Emerging Technologies (FET) Proactive Initiative, Fundamentals of Collective Adaptive Systems.

References

  1. "Inman Harvey : University of Sussex".
  2. Thompson, Adrian, Inman Harvey, and Philip Husbands. Unconstrained evolution and hard consequences . Springer Berlin Heidelberg, 1996.
  3. Inman Harvey. Google Scholar (accessed 15 November 2024)